30. On Function Spaces over a Topological Semifield

By Tomoko KONDA

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 13, 1967)

This paper is devoted to study function spaces, the elements of the space considered are functions from a topological semifield E to the real number field R.

The purpose of this paper is to introduce a topology into the function space and to consider about the property of continuous functions (see [1]).

Let E be a topological semifield and K the positive part of the semifield E.

Every semifield E is a linear topological space over the real number field R (see [2], [3], and [4]). The set K is a convex cone and its closure \overline{K} is also a convex cone. The cone K is called the positive cone of the topological semifield E.

The set K^* of all linear functionals which are non-negative on the positive cone K is called the dual cone, and the set K^*-K^* considering of all differences of elements of K^* is the order dual E^* of E. The cone K^* defines an order on E^* which is called the dual ordering of E.

In particular, the topological semifield E satisfies the equality K-K=E. Therefore, the dual ordering is anti-symmetric i.e. if $f \ge g$ and $g \ge f$ then f=g. In this case f-g is zero on each element of K and hence on E=K-K.

Next we shall consider the condition under which linear functional is the difference of two positive functionals on the topological semifield E.

Proposition 1. Let E be a topological semifield. For any two elements $x, y \in E$ we set $\rho(x, y) = |x-y|$. The mapping obtained $\rho: E \times E \rightarrow \overline{K}$ transforms E into a metric space over the semifield E. The weak topology of this metric space coincides with the topology of the semifield E.

Proposition 2. Let E be a topological semifield. For any $x \in E$ we set ||x|| = |x|. Then E becomes a normed space over the semifield E. The weak topology of this normed space coincides with the topology of the semifield E.

Let *E* be a normed space and let E^* be the space of all continuous real-valued linear function on *E*. The norm topology for the adjoint space E^* is defined by $||f|| = \sup \{|f(x)|: ||x|| < 1\}$. The topology of

No. 2]

in F is bounded.

positive convergence for E^* is called w^* -topology. A subset F of E^* is called w^* -bdd if for every $x \in E$ the set of all f(x) with f

Proposition 3. The space E^* is not complete relative to the w^* -topology unless every linear function on E is continuous.

Proposition 4 (Alaoglu). The unit sphere in E^* is compact relative to the w^{*}-topology. Hence each norm bounded w^{*}-closed subset of E^* is w^{*}-compact.

We have next theorem by the preceding discussion.

Theorem 1. Let E be a topological semifield and K the positive part of E and C be the set of all positive functionals such that $||f|| \leq 1$. Then each element of E^* is the difference of bounded positive linear functionals if and only if C-C is a neighborhood of zero in E^* .

Proof. First we shall observe the necessity. Since C is w^* -closed subset of unit sphere in E^* , C is w^* -compact and C-C is also w^* -compact. By the condition we have $K^* \cap E^* - K^* \cap E^* = E^*$ and for every f in E^* non-zero scalar m such that $mf \in C-C$. The other hand the unit sphere of E^* is w^* -compact. Therefore there exists a scalar a such that a(C-C) contains the unit sphere of E^* , that is C-C is a neighborhood of 0 in E^* . Conversely, the proof of the sufficiency is obvious.

References

- [1] J. L. Kelley and I. Namioka: Linear topological spaces. (Van Nostrand) (1961).
- [2] M. Ya. Antonovskii, V. G. Boltyanskii, T. A. Sarymsakov: Topological semifields. Tashkent, U. S. S. R (1960).
- [3] ----: Metric spaces over a semifield. Work of Univ. Tashkent 191 (1961).
- [4] ----: Topological semifield I. Topological Boolean Algebra. Tashkent. U. S. S. R (1963).