No. 2]

29. An Algebraic Formulation of K-N Propositional Calculus. II

By Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 13, 1967)

In his paper [1], K. Iséki defined the NK-algebra. For the details of the NK-algebra, see [1]. The conditions of the NK-algebra are as follows:

a)
$$\sim (p*p)*p=0$$
,

b)
$$\sim p*(q*p)=0$$
,

- c) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,
- d) Let α, β be expressions in this system, then

$$\sim \sim \beta * \sim \alpha = 0$$
 and $\alpha = 0$ imply $\beta = 0$.

In this note, we shall show that a NK-algebra is implied by the following conditions:

1)
$$\sim (p*p)*p=0,$$

2) $p*(\sim p*q)=0,$
3) $\sim \sim (\sim \sim (p*r)* \sim (r*q))* \sim (\sim q*p)=0,$
4) $\sim \sim \beta* \sim \alpha=0$ and $\alpha=0$ imply $\beta=0$, where α, β are expressions in this system. We shall prove that 1)-4) imply b)
In 3), put $p=\beta, q=\alpha, r=\gamma$, then
 $\sim \sim (\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha))* \sim (\sim \alpha*\beta)=0.$
By 4), we have $\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha)=0.$ Then we have the follow-
ings:
A) $\sim \alpha*\beta=0$ implies $\sim \sim (\beta*\gamma)* \sim (\gamma*\alpha)=0,$
B) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
C) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
C) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
C) $\sim \alpha*\beta=0, \gamma*\alpha=0$ imply $\beta*\gamma=0,$
In B), put $\alpha=\sim p*\sim p, \beta=\sim p, \gamma=p,$ then
 $\sim (\sim p*\sim p)*\sim p=0, p*(\sim p*\sim p)=0$ imply $\sim p*p=0.$
By 1) and 2) we have
5) $\sim p*p=0.$
In 3), put $q=p,$ then
 $\sim \sim (\sim \sim (p*r)* \sim (r*p))* \sim (\sim p*p)=0.$
By 5) we have
6) $\sim \sim (p*r)* \sim (r*p)=0.$
In 3), put $q=\sim p, p=\sim p, r=\sim -p,$ then
 $\sim \sim (\sim \sim (\sim p*\sim -p)* \sim (\sim -p*\sim p))* \sim (\sim -p*\sim p)=0.$
By 5), we have
7) $\sim p*\sim \sim p=0.$
In 6), put $p=\alpha, r=\beta$, then $\sim \sim (\alpha*\beta)* \sim (\beta*\alpha)=0$ implies $\alpha*$
 $\beta=0.$ Hence by 4) we have

D) $\beta * \alpha = 0$ implies $\alpha * \beta = 0$. By 5) and D) we have 8) $p * \sim p = 0$. In 3), put $p = \sim \sim q$, $r = \sim r$, and $p = \sim \sim q$, then $\sim \sim (\sim \sim (\sim \sim q * \sim r) * \sim (\sim r * q)) * \sim (\sim q * \sim \sim q) = 0,$ $\sim \sim (\sim \sim (\sim \sim q * r) * \sim (r * q)) * \sim (\sim q * \sim \sim q) = 0.$ By 8) we have respectively 9) $\sim \sim (\sim \sim q * \sim r) * \sim (\sim r * q) = 0.$ 10) $\sim \sim (\sim \sim q * r) * \sim (r * q) = 0.$ In 10), put $r = \alpha$, $q = \beta$, then $\sim \sim (\sim \sim \beta * \alpha) * \sim (\alpha * \beta) = 0$. Therefore we have E) $\alpha * \beta = 0$ implies $\sim \sim \beta * \alpha = 0$. In 9), put $r = \sim \beta$, $q = \alpha$, then $\sim \sim (\sim \sim \alpha * \sim \sim \beta) * \sim (\sim \sim \beta * \alpha) = 0.$ Then by E), we have F) $\alpha * \beta = 0$ implies $\sim \sim \alpha * \sim \sim \beta = 0$. In 10), put $r=p, q=\sim p$, then $\sim \sim (\sim \sim \sim p * p) * \sim (p * \sim p) = 0.$ By 8) we have 11) $\sim \sim \sim \sim p * p = 0.$ In 3), put $p = \sim \beta$, $q = \sim \alpha$, $r = \alpha$, then $\sim \sim (\sim \sim (\sim \beta * \alpha) * \sim (\alpha * \sim \alpha) * \sim (\sim \sim \alpha * \sim \beta) = 0.$ By 8) $\alpha * \sim \alpha = 0$, hence we have G) $\sim \sim \alpha * \sim \beta = 0$ implies $\sim \beta * \alpha = 0$. In 3), put $p = \alpha$, $q = \beta$, $r = \gamma$, then $\sim \sim (\sim \sim (\alpha * \gamma) * \sim (\gamma * \beta)) * \sim (\sim \beta * \alpha) = 0.$ And by G), $\sim \sim (\alpha * \gamma) * \sim (\gamma * \beta) = 0$ implies $\sim (\gamma * \beta) * (\alpha * \gamma) = 0$. Therefore by 4) we have $\sim \beta * \alpha = 0$ implies $\sim (\gamma * \beta) * (\alpha * \gamma) = 0$. H) In H), if we put $\beta = \alpha, \alpha = \beta, \gamma = \delta$, and $\beta = \gamma, \alpha = \delta, \gamma = \alpha$, then we have respectively H₁) $\sim \alpha * \beta = 0$ implies $\sim (\delta * \alpha) * (\beta * \delta) = 0$. H₂) $\sim \gamma * \delta = 0$ implies $\sim (\alpha * \gamma) * (\delta * \alpha) = 0$. In C), put $\alpha = \delta * \alpha$, $\beta = \beta * \delta$, $\gamma = \alpha * \gamma$, then by H₁) and H₂) we have I) $\sim \alpha * \beta = 0, \sim \gamma * \delta = 0 \text{ imply } (\beta * \delta) * \sim (\alpha * \gamma) = 0.$ In H), put $\alpha = \sim \sim p, \beta = p, \gamma = r$, then by 5) we have 12) $\sim (r * p) * (\sim \sim p * r) = 0.$ By 11), put $p = \sim \alpha$, then we have J) $\alpha = 0$ implies $\sim \sim \alpha = 0$. In J), put $\alpha = \sim \gamma * \beta$, then we have $\sim \gamma * \beta = 0$ implies $\sim \sim (\sim \gamma * \beta) = 0$. In 9), put $\gamma = \delta$, $q = \gamma$, then we have

130

 $\sim \sim (\sim \sim \gamma * \sim \delta) * \sim (\sim \delta * \gamma) = 0 \text{ implies } \sim \sim \gamma * \sim \delta = 0.$ In I), put $\alpha = \sim \gamma$, $\beta = \sim \delta$, $\gamma = \beta$, $\delta = \alpha$, then we have $\sim \sim \gamma * \sim \delta = 0$, $\sim \beta * \alpha = 0 \text{ imply } (\sim \delta * \alpha) * \sim (\sim \gamma * \beta) = 0.$ In F), put $\alpha = \sim \delta * \alpha$, $\beta = \sim (\sim \gamma * \beta)$. then we have $(\sim \delta * \alpha) * \sim (\sim \gamma * \beta) = 0$ implies $\sim \sim (\sim \delta * \alpha) * \sim (\sim \gamma * \beta) = 0$. Therefore we have the following general

theorem.

- K) $\sim \beta * \alpha = 0$, $\sim \gamma * \beta = 0$, $\sim \delta * \gamma = 0$ imply $\sim \delta * \alpha = 0$. In H), put $\beta = p$, $\alpha = p$, $\gamma = r$, then by 5) we have
- 13) $\sim (r*p)*(p*r)=0.$ In K), put $\delta = \gamma$, then by 5) we have
- L) $\sim \beta * \alpha = 0, \sim \gamma * \beta = 0$ imply $\sim \gamma * \alpha = 0.$

In L), put $\beta = \sim \sim p * q$, $\alpha = \sim \sim q * \sim \sim p$, then by 12) and 2) we have

- 14) $\sim p * (\sim \sim q * \sim \sim p) = 0.$ In H) put $\delta = p$ $\gamma = \infty$
- In H₂), put $\delta = p$, $\gamma = \sim \sim p$, $\alpha = \sim \sim q$, then by 11) we have 15) $\sim (\sim \sim q * \sim \sim p) * (p^* \sim \sim q) = 0.$
- In H₁), put $\alpha = \sim \sim q$, $\beta = q$, $\delta = p$, then by 11) we have 16) $\sim (p * \sim \sim q) * (q * p) = 0.$

In K), put $\alpha = q * p$, $\beta = p * \sim \sim q$, $\gamma = \sim \sim q * \sim \sim p$, $\delta = p$, then by

14), 15), and 16) we have

17)
$$\sim p * (q * p) = 0.$$

Therefore the proof is complete.

Reference

 K. Iséki: An Algebraic Formulation of K-N Propositional Calculus. Proc. Japan Acad., 42, 1164-1167 (1966).