23. A Note on Congruences

By F. M. SIOSON

Ateneo de Manila

(Comm. by Kinjirô KUNUGI, M.J.A., Feb. 13, 1967)

The object of this note is to give necessary and sufficient conditions when a collection of disjoint non-empty subsets constitute equivalence classes of a congruence (relation) of a universal algebra. This extends previous results by M. Teissier [4] and G. B. Preston $\lceil 3 \rceil$.

Let A = (A, O) be a universal algebra with operations $O = \{o_i \mid i \in I\}$. Let Σ be the semigroup with identity of functions generated under composition by all unary functions of the forms $o_i(x, a_1, \dots, a_{n_i-1})$, $o_i(a_0, \dots, a_{j-1}, x, a_{j+1}, \dots, a_{n_i-1})$ $(j=1, \dots, n_i-2)$, and $o_i(a_0, \dots, a_{n_i-2},$ x) for some $i \in I$ and some $a_0, a_1, \dots, a_{n_i-1} \in A$. The class of an equivalence relation θ containing the element a will be denoted by a/θ .

From [2] recall the following

Proposition 1. A necessary and sufficient condition for an equivalence relation θ on A in a universal algebra A to be a congruence is that if $(x, y) \in \theta$, then $(\sigma(x), \sigma(y)) \in \theta$ for all $x, y \in A$, and $\sigma \in \Sigma$.

Definition. A subset $S \subseteq A$ is *intact* under an equivalence relation θ on A if and only if $S \times S \subseteq \theta$.

Proposition 2. A subset $S \subseteq A$ is intact under an equivalence relation θ on A if and only if $S \subseteq a/\theta$ for some $a \in A$.

Proof. For self-containment, we shall give a proof. Let S be intact under θ and $a \in S$ so that $S \times S \subseteq \theta$. If $x \in S$, then $(x, a) \in \theta$ or $x \in a/\theta$. Thus $S \subseteq a/\theta$. Conversely, suppose $S \subseteq a/\theta$ for some $a \in A$. If $(x, y) \in S \times S$, so that $x, y \in S$, then $x, y \in a/\theta$ or (x, a), $(y, a) \in \theta$. By reflexivity of θ then $(x, a), (a, y) \in \theta$, and hence $(x, y) \in \theta$ by transitivity. Therefore $S \times S \subseteq \theta$.

Theorem 3. Let A = (A, O) be a universal algebra. The minimum congruence under which each member of a collection S of disjoint non-empty subsets of A is intact is the transitive closure $\theta_S = \bigcup_{i=1}^{U} \theta^i$ of the relation $\theta = \{(x, y) \mid x, y \in \sigma(T) \text{ for some } \sigma \in \Sigma \text{ and some } T \in T\}$, where $T = S \cup \{x\} \mid x \in A \setminus \cup S\}$.

Proof. Observe that the diagonal of $A, \Delta_A \subseteq \theta \subseteq \theta_S$ and $\theta^{-1} = \theta$ so that

$$\theta_{\boldsymbol{S}}^{-1} = \left(\bigcup_{i=1}^{\infty} \theta^{i}\right)^{-1} = \bigcup_{i=1}^{\infty} (\theta^{i})^{-1} = \bigcup_{i=1}^{\infty} (\theta^{-1})^{i} = \bigcup_{i=1}^{\infty} \theta^{i} = \theta_{\boldsymbol{S}}$$

F. M. SIOSON

and $\theta_S \theta_S = \left(\bigcup_{i=1}^{\infty} \theta^i\right) \left(\bigcup_{i=1}^{\infty} \theta^i\right) = \bigcup_{i=1}^{\infty} \theta^{i+1} \subseteq \theta_S$. Thus θ_S is an equivalence relation. Observe that $(x, y) \in \theta_S$ if and only if there exists $a_1, a_2, \cdots, a_m \in A$ $(m \ge 2)$, and $\sigma_1, \sigma_2, \cdots, \sigma_{m-1} \in \Sigma$ such that $x = a_1, y = a_m$, and $a_i, a_{i+1} \in \sigma_i(T)$ $(i=1, \cdots, m-1)$ for some $T \in T$. Hence $\sigma(x) = \sigma(a_1)$, $\sigma(y) = \sigma(a_m)$, and $\sigma(a_i), \sigma(a_{i+1}) \in \sigma\sigma_i(T)$ for any $\sigma \in \Sigma$. Since $\sigma\sigma_i \in \Sigma$, then $(\sigma(x), \sigma(y)) \in \theta_S \cdot \theta_S$ is therefore a congruence.

Now, let ϕ be any congruence of A under which each member of S is intact. Suppose $(x, y) \in \theta$ so that $x = \sigma(s)$ and $y = \sigma(t)$ for some $s, t \in T$, and some $T \in T$. If $T \in S$, then $(s, t) \in \phi$ and hence $(\sigma(s), \sigma(t)) = (x, y) \in \phi$. On the other hand, if $T = \{x\}$, then $(x, y) \in \Delta_A$ and hence $(x, y) \in \phi$. Thus in any case, $\theta \subseteq \phi$ and therefore $\theta_S \subseteq \phi$. This shows that θ_S is minimum.

Definition. A subset $S \subseteq A$ is full for a relation θ on A if and only if $(x, y) \in \theta$ and $x \in S$ implies $y \in S$.

Proposition 4. A subset $S \subseteq A$ is full for an equivalence relation θ on A if and only if $S = \bigcup_{x} x/\theta$.

Proof. Suppose that S is full for θ . Then obviously, $S \subseteq \bigcup_{x \in S} x/\theta$. If $y \in \bigcup_{x \in S} x/\theta$, so that $y \in s/\theta$ or $(s, y) \in \theta$ for some $s \in S$, then $y \in S$. Whence $S = \bigcup x/\theta$.

Conversely, suppose $S = \bigcup_{x \in S} x/\theta$. Let $x, s \in A$ with $(x, s) \in \theta$ and $s \in S$. Then $x/\theta \cap y/\theta \neq \emptyset$ and hence $x/\theta = s/\theta$ or in other words, $x \in S$.

Theorem 5. The maximum congruence for which each element of a collection S of non-empty disjoint subsets of A in a universal algebra A is full is the relation θ^{S} such that $(x, y) \in \theta^{S}$ if and only if for each $S \in S$, $\sigma(x) \in S$ is equivalent to $\sigma(y) \in S$ for all $\sigma \in \Sigma$. If $\theta = \bigcup_{\substack{S \in S \\ S \in S}} S \times S \cup (A \setminus \bigcup S) \times (A \setminus \bigcup S)$, then $\theta^{S} = \{(x, y) \mid (\sigma(x), \sigma(y)) \in \theta \text{ for} all \sigma \in \Sigma\}$.

Proof. Obviously, θ^s is reflexive, symmetric, and transitive and hence, an equivalence relation. Let $\sigma \in \Sigma$ and suppose $(x, y) \in \theta^s$. For each $\sigma' \in \Sigma$ note that $\sigma' \sigma \in \Sigma$. Hence, for all $S \in S$, $\sigma' \sigma(x) \in S$ if and only if $\sigma' \sigma(y) \in S$ for all $\sigma' \in \Sigma$. Thus, $(\sigma(x), \sigma(y)) \in \theta^s$ and θ^s is a congruence, by Proposition 1.

Note, if for each $S \in S$, $\sigma(x) \in S$ is equivalent to $\sigma(y) \in S$ for all $\sigma \in \Sigma$, then $(\sigma(x), \sigma(y)) \in \theta$ for all $\sigma \in \Sigma$. The converse also holds. Observe that if $(x, y) \in (A \setminus \bigcup S) \times (A \setminus \bigcup S)$, then the sentence ' $\sigma(x) \in S$ is equivalent to $\sigma(y) \in S$ ' is trivially true, since both antecedent and consequent are false.

Now, let θ be a congruence of A for which each member of S is full. If $(x, y) \in \theta$, then $(\sigma(x), \sigma(y)) \in \theta$ for all $\sigma \in \Sigma$. Hence, for

each $S \in S$, $\sigma(x) \in S$ if and only if $\sigma(y) \in S$ for all $\sigma \in \Sigma$. This means that $(x, y) \in \theta^s$ and therefore $\theta \subseteq \theta^s$. Thus, θ^s is the maximum congruence of A for which each member of the collection S is full.

Proposition 6. Let S be a collection of disjoint non-empty subsets of a set A. S are classes of an equivalence relation θ on A if and only if each $S \in S$ is both intact under and full for θ .

Proof. Observe that a class of an equivalence relation θ on A is always intact under and full for θ . Suppose $S \in S$ is full for an equivalence relation θ on A. Then $S = \bigcup_{x \in S} x/\theta$. If, in addition, S also is intact under θ , then $S \subseteq s/\theta$ for some $s \in S$. Whence, $S = s/\theta$.

Remarks. Note that any non-empty subset S of A in a universal algebra A is intact under the congruence $A \times A$ of A, so that the family L_S of all congruences of A under which each member S of S is intact is non-empty. In fact, $\theta_S = \cap L_S$. In particular, $\theta_{(S)} = \cap L_{(S)}$. Moreover, $\theta_S = \cap \{\theta_{(S)} \mid S \in S\}$.

Similarly, any non-empty subset S of A is full for the congruence $\Delta_A = \{(x, x) \mid x \in A\}$ of A, so that the family L^S of all congruences of A for which each member S of S is full is non-empty and $\theta^S = \bigvee L^S$. Observe, however, that θ^S is not necessarily equal to $\cap \{\theta^{(S)} \mid S \in S\}$ where $\theta^{(S)} = \bigvee L^{(S)}$, although, generally, $\theta^S \subseteq \cap \{\theta^{(S)} \mid S \in S\}$. On the other hand, observe that $L^S = \cap \{L^{(S)} \mid S \in S\}$.

Theorem 7. Both $L_{(s)}$ and $L^{(s)}$ are complete sublattices of the lattice of congruences L(A) of a universal algebra A for each subset $S \subseteq A$.

Proof. If $\theta_j \in L_{(S)}$ for each $j \in J$, so that $S \times S \subseteq \theta_j$ for each $j \in J$, then $S \times S \subseteq \bigcap_{j \in J} \theta_j$. Hence $\bigcap_{j \in J} \theta_j \in L_{(S)}$. Similarly, if $\theta_j \in L_{(S)}$ for each $j \in J$, then the minimal congruence of A that contains their union $\bigcup_{j \in J} \theta_j$ also contains $S \times S$. Whence, $\bigvee_{j \in J} \theta_j \in L_{(S)}$. Let $\theta_j \in L^{(S)}$ for each $j \in J$. Then, if $(x, y) \in \bigcap_{j \in J} \theta_j$ and $x \in S$, we

Let $\theta_j \in L^{(s)}$ for each $j \in J$. Then, if $(x, y) \in \bigcap_{j \in J} \theta_j$ and $x \in S$, we have $(x, y) \in \theta_j$ and $x \in S$ for each $j \in J$. This implies that $y \in S$ for all $j \in J$ and therefore $\bigcap_{j \in J} \theta_j \in L^{(s)}$. If $(x, y) \in \bigvee_{j \in J} \theta_j$ and $x \in S$, so that for some elements $a_i \in A$, $(a_i, a_{i+1}) \in \theta_{j_i}$ $(i=1, 2, \cdots, n-1)$ with $x=a_1$ and $y=a_n$, then (by repeated application of the hypothesis) $a_i \in S$ for $i=1, 2, \cdots, n$. Hence, $y \in S$ and $\bigvee_{j \in J} \theta_j \in L^{(s)}$.

Corollary 8. For each collection S of non-empty disjoint subsets of A in a universal algebra A, both L_s and L^s are complete sublattices of the congruence lattice L(A) of the algebra.

Proof. This result follows from the observation that $L_S = \cap \{L_{(S)} | S \in S\}$ and $L^S = \{L^{(S)} | S \in S\}$ and the fact that the intersection of any family of complete lattices is a complete lattice.

Theorem 9. The following conditions are equivalent for any

collection S of non-empty disjoint subsets of A in a universal algebra A:

- (1) S consists of equivalence classes of some congruence of A;
- (2) every $S \in S$ is full for the congruence θ_{s} ;
- $(3) \quad \theta_{\mathbf{S}} \subseteq \theta^{\mathbf{S}};$
- (4) every $S \in S$ is intact under the congruence θ^s ;
- (5) if $\sigma(S_j) \cap S_k \neq \emptyset$, then $\sigma(S_j) \subseteq S_k$ for all $\sigma \in \Sigma$ and $S_j, S_k \in S$.

Proof. (1) implies (2). Suppose S are equivalence classes of a congruence θ of A. This implies that each $S \in S$ is intact under θ and hence $\theta_S \subseteq \theta$ by Theorem 3. Let $S \in S$. If $(x, y) \in \theta_S$ and $x \in S$, then also $(x, y) \in \theta$ and $x \in S$, and hence $y \in S$. Condition (2) then follows, since $S \in S$ is arbitrary.

(2) implies (3). The relation $\theta_S \subseteq \theta^S$ holds, since θ^S is the maximum congruence of A for which each $S \in S$ is full.

(3) implies (4). For each $S \in S$, it is clear that $S \times S \subseteq \theta_S \subseteq \theta^S$.

(4) implies (1). Each $S \in S$ is naturally full for θ^s and by hypothesis is also intact under θ^s . Therefore, each $S \in S$ is an equivalence class of the congruence θ^s (by Proposition 6).

(4) implies (5). By the preceding argument, each $S \in S$ is an equivalence class of the congruence θ^s . Thus, for all $x, y \in S_j \in S$, we have $(\sigma(x), \sigma(y)) \in \theta^s$ for all $\sigma \in \Sigma$. This means that $\sigma(S_j) \times \sigma(S_j) \subseteq \theta^s$. Since S_j is arbitrary, then each $\sigma(S_j)$ is intact under θ^s . Hence, if $\sigma(S_j) \cap S_k \neq \emptyset$ (remembering that S_k is an equivalence class of θ^s), then S_k must be precisely the equivalence class of θ^s that contains $\sigma(S_j)$.

(5) implies (4). Let S be an arbitrary element of S and suppose $x, y \in S$ and $\sigma \in \Sigma$. For each $S' \in S$, if $\sigma(x) \in S'$, so that $\sigma(S) \cap S' \neq \emptyset$, then $\sigma(S) \subseteq S'$ (by hypothesis (5)). Hence $\sigma(x) \in S'$. By symmetry, we also have, if $\sigma(y) \in S'$, then $\sigma(x) \in S'$. Together, we have, $\sigma(x) \in S'$ is equivalent to $\sigma(y) \in S'$ for $S' \in S$. Whence, $(x, y) \in \theta^S$. We have thus shown that $S \times S \subseteq \theta^S$ for all $S \in S$ or in other words, each $S \in S$ is intact under θ^S .

Theorem 10. Let S be a family of non-empty disjoint subsets of A. If the members of S are equivalence classes of a congruence of A, then $\theta_{s}(\theta^{s})$ is the minimum (maximum) congruence of A which has the family S as equivalence classes.

Proof. Since each $S \in S$ is full for the congruence θ^s (by Theorem 5), then $S = \bigcup_{x \in S} x/\theta^s$. On the other hand, since the members of S are equivalence classes of a congruence, then (by Theorem 9), each $S \in S$ is also intact under θ^s , that is to say, $S = s/\theta^s$ for each $S \in S$ and $s \in S$.

Similarly, by Theorem 9, each $S \in S$ is full for the congruence

 θ_s . Since each $S \in S$ is always intact under θ_s (by Theorem 3), then each $S \in S$ is an equivalence class of θ_s (by Proposition 6). Thus, if each $S \in S$ is an equivalence class of a congruence θ of A, then each $S \in S$ (by Proposition 6) is both full for and intact under θ . Whence, $\theta_s \subseteq \theta \subseteq \theta^s$ (by Theorems 3 and 5).

Theorem 11. Let S be a collection of non-empty disjoint subsets of A. The family of all congruences of a universal algebra A for which the members of S are equivalence classes constitutes a complete sublattice of the congruence lattice of A which has θ_s as its first element and θ^s as its last element.

Proof. Let the above family be denoted by L(S). Then note that $L(S) = L_S \cap L^S$. By Corollary 8, both L_S and L^S are complete sublattices. Hence, L(S) is also a complete sublattice of L(A) with the prescribed special elements.

Theorem 12. A collection S of non-empty disjoint subsets of A constitutes a family of equivalence classes of precisely one congruence relation θ of a universal algebra A if and only if $\theta_S = \theta = \theta^S$.

The proof follows from the previous Theorem 11.

References

- [1] Grillet, Pierre-Antoine: Note on Congruences in Semigroups. (Dittoed Classroom Notes). Department of Mathematics, University of Florida, Gainesville (1965).
- [2] Malcev, A. I.: On the general theory of algebraic systems. Matematiceskih Sbornik, 35, 3-20 (1954).
- [3] Preston, G. B.: Congruences on completely simple semigroups. Proceedings of the London Mathematical Society, Series 3, 11, 557-576 (1961).
- [4] Teissier, M.: Sur les equivalences regulières dáns les demigroupes. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 232, 1987-1989 (1951).