21. Decomposability of Extension and its Application to Finite Semigroups^{*)}

By Takayuki TAMURA

University of California, Davis, California, U.S.A.

(Comm. by Kenjiro SHODA, M.J.A., Feb. 13, 1967)

1. Introduction. Let \mathcal{T} be a property preserved by arbitrary homomorphisms, for example, system of identities $\{f_i(x_1, \dots, x_n)\}$ $=g_i(x_1, \dots, x_n); i=1, \dots, k\}$ where f_i and g_i are words. Let ρ be a congruence on a semigroup S. If S/ρ satisfies \mathcal{T} for all x_1, \dots, x_n $x_n \in S/\rho$, then ρ is called a \mathcal{T} -congruence on S and S/ρ is called a \mathcal{I} -homomorphic image of S. It is well known that given \mathcal{I} and S there is a smallest \mathcal{I} -congruence ρ_0 on S, that is, if ρ is a \mathcal{I} -congruence on S then $\rho_0 \subseteq \rho$. S/ρ_0 is called the greatest \mathcal{T} -homomorphic image of S. A semigroup S is called \mathcal{I} -indecomposable if the only trivial semigroup is a \mathcal{T} -homomorphic image of S. In particular if $\mathcal{I} = \{x^2 = x, xy = yx\}, \rho$ is called an s-congruence, S/ρ is an s-homomorphic image of S. The study of finite non-simple s-indecomposable semigroups is reduced to the study of ideal extensions of an s-indecomposable semigroup by an s-indecomposable semigroup with zero. From more general point of view we give a few theorems which are applied to the theory of finite s-indecomposable non-simple semigroups. The terminology in this paper is based on Clifford and Preston's book.**)

2. Basic theorems. First we introduce some notations. Let ρ be a congruence on a semigroup S. Let H be a subsemigroup of S. $\rho \mid H$ is the restriction of ρ to H.

Let ξ and η be congruences on S such that $\xi \subseteq \eta$. We define a congruence $\overline{\eta}$ on S/ξ as follows:

 \bar{x} denotes the congruence class (modulo ξ) containing x

 $\overline{x}\overline{\eta}\overline{y}$ if and only if $x\eta y$

 $\overline{\eta}$ is denoted by $\overline{\eta} = \eta/\xi$.

Let ξ be an equivalence on a set E and A be a subset of E. A subset $A \cdot \xi$ of E is defined as follows:

 $A \cdot \xi = \{x \in E; x \xi y \text{ for some } y \in A\}.$

If I is an ideal of a semigroup S and if ξ is a congruence on S, then $I \cdot \xi$ is an ideal of S and $I \subseteq I \cdot \xi$.

^{*)} This paper is a part of the results of the research sponsored by NSF GP-5988.

^{**)} A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. Amer. Math. Soc., Providence, R. I. (1961).

Let H be a subsemigroup of S. Let ξ and η be congruences on H and S, respectively. If $\eta \mid H = \xi$ and if $H \cdot \eta = S$, then η is called a stretched extension of ξ to S, and the homomorphism $S \rightarrow S/\eta$ is called a stretched extension of the homomorphism $H \rightarrow H/\xi$ to S.

Let η be a congruence on S. Then $\eta \mid (H \cdot \eta)$ is the stretched extension of $\eta \mid H$ to $H \cdot \eta$ and hence

Lemma 1. $H/(\eta \mid H) \cong (H \cdot \eta)/(\eta \mid (H \cdot \eta))$.

Let S/I denote the Rees factor semigroup of S modulo an ideal I.

Proposition 1. Let I be an ideal of a semigroup and ρ be a congruence on S. Then S/ρ is an ideal extension of $I/(\rho | I)$ by Z where Z is a homomorphic image of S/I.

Proof. We can prove $S/I \rightarrow S/(I \cdot \rho) \rightarrow (S/\rho)/\{(I \cdot \rho)/(\rho \mid (I \cdot \rho))\} \cong (S/\rho)/\{I/(I/(\rho \mid I))\}$ where " $X \rightarrow Y$ " denotes "X is homomorphic onto Y." $I/(\rho \mid I)$ is an ideal of S/ρ .

Lemma 2. Let I be a \mathcal{T} -indecomposable semigroup, T be a \mathcal{T} -decomposable semigroup with zero and let π be the smallest \mathcal{T} -congruence on T. Let S be an ideal extension of I by T, and let γ denote the Rees-congruence on S modulo I, and ρ the smallest \mathcal{T} -congruence on S. Then

$$\gamma \subseteq \rho$$
 and $\pi \subseteq \rho/\gamma$.

Proof. Since I is \mathcal{T} -indecomposable, $\gamma \subseteq \rho$ Now ρ/γ is a \mathcal{T} -congruence on S/γ and $S/\gamma \cong T$. Since π is the smallest \mathcal{T} -congruence on S/γ ,

 $\pi \subseteq \rho/\gamma$.

Theorem 2. Let I be a \mathcal{I} -indecomposable semigroup and T be a \mathcal{I} -indecomposable semigroup with zero. Every ideal extension S of I by T is \mathcal{I} -indecomposable.

Proof. In Lemma 2, π is the universal relation on *T*, that is, $\pi = T \times T$ and hence

$$\rho/\gamma = T \times T = (S \times S)/\gamma$$
.

It follows that $\rho = S \times S$, since generally if $\gamma \subseteq \rho_1, \gamma \subseteq \rho_2$ and if $\rho_1/\gamma = \rho_2/\gamma$, then $\rho_1 = \rho_2$.

Theorem 3. Let I be a \mathcal{T} -decomposable semigroup and σ be the smallest \mathcal{T} -congruence on I. Let T be a \mathcal{T} -indecomposable semigroup. If S is an ideal extension of I by T and if S has a \mathcal{T} -congruence ρ such that $\rho | I = \sigma$, then ρ is the smallest \mathcal{T} -congruence on S.

Proof. Let ρ' be the smallest \mathcal{I} -congruence on S. Since $\rho' \subseteq \rho$, $\rho' \mid I \subseteq \rho \mid I = \sigma$ and $\rho' \mid I$ is a \mathcal{I} -congruence on I, hence

$$\rho' \mid I = \rho \mid I = \sigma.$$

No. 2] Decomposability of Extension and its Application to Finite Semigroups 95

Let γ be the Rees-congruence on S modulo I. Let $\rho' \lor \gamma$ denote the congruence generated by ρ' and γ . Clearly $(\rho' \lor \gamma)/\gamma$ is a \mathcal{I} -congruence on S/γ , but S/γ is \mathcal{I} -indecomposable by the assumption. Henceforth $(\rho' \lor \gamma)/\gamma = (S/\gamma) \times (S/\gamma) = (S \times S)/\gamma$

which implies $\rho' \lor \gamma = S \times S$. It can be seen that for each $a \in S$ there is $b \in I$ such that $a\rho'b$. Now we shall prove $\rho \subseteq \rho'$. Let $x\rho y$. By the above remark there are $x', y' \in I$ such that $x\rho'x', y\rho'y'$. Since $\rho' \subseteq \rho$, we have $x'\rho y'$; however, $x'\rho'y'$ because $\rho \mid I = \rho' \mid I$. Therefore we obtain $x\rho'y$. Thus $\rho = \rho'$. This completes the proof.

Theorem 4. Let I be an ideal of a semigroup S. If ρ is a congruence on I such that I/ρ is a semigroup with a right identity, then there is a stretched extension of ρ to S.

Proof. Let φ be a right translation of I and suppose that φ is linked with some left translation ψ of I. Since I/ρ has a right identity, there is $a \in S$ such that

$xa\rho x$ for all $x \in S$.

Now $x\rho y$ implies $x\varphi\rho y\varphi$ since $x\varphi\rho(x\varphi)a=x(a\psi)\rho y(a\psi)=(y\varphi)a\rho y\varphi$. Let \overline{x} denote the equivalence class (modulo ρ) containing x. For φ we define a transformation $\overline{\varphi}$ of I/ρ by

$$\overline{x}\overline{\varphi} = \overline{x}\overline{\varphi}.$$

Then we can prove that $\overline{\varphi}$ is a right translation of I/ρ and $\varphi \rightarrow \overline{\varphi}$ is a homomorphism of S onto the semigroup of all inner right translations of I/ρ , and if $c, b \in I$ then $\overline{\varphi}_e = \overline{\varphi}_b$ implies $c\rho b$.

Corollary. If f is a homomorphism of I onto a group G, then there is a homomorphism g of S onto G such that g is a stretched extension of f to S. If g is a homomorphism of S onto a group G and if I is an ideal of S, then I is homomorphic onto G under g.

3. Application. Let S be a finite non-simple s-indecomposable semigroup, and let I be the minimal ideal of S if S has no zero; let I be a 0-minimal ideal of S if S has a zero. In the former case I is a finite simple simigroup; in the latter case, I is either a finite 0-simple semigroup with zero divisors or a null semigroup. T is, of course, an s-indecomposable semigroup with zero.

If S has no zero, a minimal ideal I of S is uniquely determined, but if S has a zero, a 0-minimal ideal of S is not necessarily unique. Instead of 0-minimal ideals we consider the set union M of all 0-minimal ideals. M is also an ideal of S. Let I_1, I_2, \dots, I_k be all 0-minimal ideals of S. Each one is either a null semigroup or a 0-simple subsemigroup and

$$I_i I_j = \{0\}, \qquad i \neq j$$

We say that M is the 0-amalgam of I_1, \dots, I_k . (Table II)

By using the results of §2 we can classify all finite s-inde-

composable semigroups with proper ideals into 16 classes as the Tables I, II show below.

Let σ be the smallest *c*-congruence and τ be the smallest *i*-congruence on *S*, namely, $c = \{xy = yx\}, i = \{x^2 = x\}$. A finite simple *i*-indecomposable semigroup is a proup. Let *I* be a finite simple semigroup and G^* be the structure group of *I*. *I* is *c*-indecomposable if and only if G^* is *c*-indecomposable, equivalently, the commutator subgroup K^* of G^* coincides with G^* .¹⁾

I	T	S	S/o	S/ au	Example I T	Min. Order	Class No.
<i>c</i> -ind	c-ind	<i>c</i> -ind <i>i</i> -ind			A_5 C_5	64	1.1
group	c-dec	c-dec <i>i</i> -ind	nil		$A_5 N_2$	61	1.2
<i>c</i> -ind <i>i</i> -dec simple	<i>c</i> -ind	c-ind i-dec		rect	$A_5 imes R_2 \ C_5$	124	1.3
	c-dec	c-dec i-dec	nil	rect	$A_5 imes R_2 N_2$	121	1.4
<i>c</i> -dec	<i>c</i> -ind	c-dec <i>i</i> -ind	group		G2 C5	6	1.5
group	c-dec	<i>c</i> -dec <i>i</i> -ind	u.g.		G2 N2	3	1.6
<i>c</i> -dec <i>i</i> -dec simple	<i>c</i> -ind	c-dec i-dec	group	rect	$G_2 imes R_2 C_5$	8	1.7
	c-dec	c-dec i-dec	u.g.	rect	$G_2 imes R_2 N_2$	5	1.8

Table I. Non-simple s-Indecomposable Semigroups Without Zero

Table II. Non 0-simple s-Indecomposable Semigroups With Zero

М	T	S	S/o	Exam M	T	Min. Order	Class No.
0-amalagam of	<i>c</i> -ind	<i>c</i> -ind		<i>C</i> 5	C_5	9	2.1
0-simple semigroups	<i>c</i> -dec	c-dec	nil	C_5	N_2	6	2.2
		<i>c</i> -ind		N_8	<i>C</i> ₅	7	2.3
Null	<i>c</i> -ind	c-dec	nil	N_3	C_5	7	2.4
	<i>c</i> -dec	c-dec	nil	N2	N_2	2	2.5
		<i>c</i> -ind		$N_3 \frown C_5$	<i>C</i> 5	11	2.6
0-amalgam of 0-simple and Null	<i>c</i> -ind	<i>c</i> -dec	nil	$N_3 \frown C_5$	C_5	11	2.7
semigroups	<i>c</i> -dec	c-dec	nil	$N_2 \wedge C_5$	N2	7	2.8

¹⁾ T. Tamura: Note on finite simple c-ndecomposable semigroups. Proc. Japan Acad., 35, 13-15 (1959).

No. 2] Decomposability of Extension and its Application to Finite Semigroups 97

Remarks:

In Table I, "c-ind" means "c-indecomposable"; "c-dec" means "cdecomposable"; "nil" is "nil-semigroup" that is, "unipotent semigroup with zero" ("unipotent" is "with unique idempotent"); "u.g." is "unipotent semigroup containing proper subgroup"; "rect" is "rectangular band"; "null" is "null semigroup" i.e., "semigroup with xy=0 for all x, y"; A_5 is the alternative group of degree 5; C_5 is a 0-simple semigroup of order 5 with zero divisor; N_i is a null semigroup of order i, R_2 is a right zero semigroup of order 2; G_2 is a cyclic group of order 2.

In Table II, $N_3 \frown C_5$ is the 0-amalgam of N_3 and C_5 .