47. On the Classical Propositional Calculus of A. R. Anderson and N. D. Belnap

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., March 13, 1967)

In this paper, we concern with the classical propositional calculus by A. R. Anderson and N. D. Belnap [1]. In their system, axioms are formulated as "if p and $\sim p$ are in a primitive disjunction α , then α is an axiom", and rules of deduction as

I)
$$\frac{\varphi(\alpha)}{\varphi(\sim \sim \alpha)}$$
, II) $\frac{\varphi(\sim \alpha), \varphi(\sim \beta)}{\varphi(\sim (\alpha \lor \beta))}$.

We shall show that, if we interpret $p \rightarrow q$ as $\sim p \lor q$, then we have Lukasiewicz axiom system:

- 1) $p \rightarrow (q \rightarrow p)$,
- 2) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)),$
- 3) $(\sim p \rightarrow \sim q) \rightarrow (q \rightarrow p)$.

To prove 1), take

- (1) $\sim p \vee (\sim q \vee p)$,
- then (1) is an axiom, since (1) contains p and $\sim p$ at the same time. Hence $p \rightarrow (\sim q \lor p)$ and we have $p \rightarrow (q \rightarrow p)$.

To prove 2), it is sufficient to show

$$(2) \sim (\sim p \vee \sim q \vee r) \vee \sim (\sim p \vee q) \vee \sim p \vee r.$$

The following formulas are axioms:

- (3) $\sim r \vee (\sim p \vee r) \vee \sim q$.
- $(4) \quad q \vee (\sim p \vee r) \vee \sim q,$
- (5) $p \lor (\sim p \lor r) \lor \sim q$.

By the rule of deduction I), (4) implies

 $(6) \sim \sim q \vee (\sim p \vee r) \vee \sim q,$

similarly by I), (5) implies

 $(7) \sim p \vee (\sim p \vee r) \vee \sim q.$

Then, by II), (3) and (6) imply

(8) $\sim (\sim q \vee r) \vee (\sim p \vee r) \vee \sim q$.

Further, by II), (7) and (8) imply

(9) $\sim (\sim p \lor (\sim q \lor r)) \lor (\sim p \lor r) \lor \sim q$.

On the other hand,

- (10) $\sim r \vee (\sim p \vee r) \vee p$,
- (11) $q \vee (\sim p \vee r) \vee p$,
- (12) $p \vee (\sim p \vee r) \vee p$.

are axioms in this system. By I), (10) implies

(13)
$$\sim r \vee (\sim p \vee r) \vee \sim \sim p$$
.

Similarly (11) implies
$$\sim \sim q \lor (\sim p \lor r) \lor p$$
 and further

$$(14) \sim \sim q \vee (\sim p \vee r) \vee \sim \sim p.$$

(12) implies

(15)
$$\sim \sim p \vee (\sim p \vee r) \vee \sim \sim p$$
.

By (13), (14), and II), we have

(16)
$$\sim (\sim q \vee r) \vee (\sim p \vee r) \vee \sim \sim p$$
.

We use the rule of deduction II), then we have

(17)
$$\sim (\sim p \vee (\sim q \vee r)) \vee (\sim p \vee r) \vee \sim \sim p$$
.

Consequently (9) and (11) imply

$$\sim (\sim p \vee q) \vee \sim (\sim p \vee (\sim q \vee r)) \vee (\sim p \vee r),$$

which is the formula (2).

Next we shall prove 3).

$$\sim p \lor (\sim q \lor p),$$

 $q \lor (\sim q \lor p)$

are axioms in this system. Then by I), we have

$$\sim \sim \sim p \vee (\sim q \vee p)$$

and

$$\sim \sim q \vee (\sim q \vee p)$$
.

Then by II), we have

$$\sim (\sim \sim p \vee \sim q) \vee (\sim q \vee p),$$

which is $\sim (\sim p \rightarrow \sim q) \lor (q \rightarrow p)$. This means $(\sim p \rightarrow \sim q) \rightarrow (q \rightarrow p)$.

Therefore we complete the proof.

Reference

[1] A. R. Anderson and N. D. Belnap, Jr.: A simple treatment of truth functions. Jour. Symbolic Logic, 24, 301-302 (1959).