107. On a Certain Class of Univalent Functions

By Tetsujirô Kakehashi
University of Osaka Prefecture
(Comm. by Kinjirô Kunugi, m.J.A., June 12, 1967)

Let us consider a simply connected polygon which has $2 n$ sides parallel to the real axis or imaginary axis in the w-plane. If we call its vertices $w_{1}, w_{2}, \cdots, w_{2}$ and denote its interior angles $\pi \alpha_{1}, \pi \alpha_{2}$, $\cdots, \pi \alpha_{2 n}$ respectively, α_{k} takes the value $1 / 2$ or $3 / 2$, and $\sum_{k=1}^{2 n} \alpha_{k}$ is equal to $2 n-2$.

We can construct the function $w=f(z)$ which maps the interior of unit circle $|z|<1$ onto the interior of this polygon by

$$
\begin{equation*}
\frac{d w}{d z}=K\left(z-z_{1}\right)^{\alpha_{1}-1}\left(Z-z_{2}\right)^{\alpha_{2}-1} \cdots\left(z-z_{2 n}\right)^{\alpha_{2 n}-1} \tag{1}
\end{equation*}
$$

where $z_{k}=e^{i \theta_{k}}\left(0 \leqq \theta_{1}<\theta_{2}<\cdots<\theta_{2 n}<2 \pi\right)$ are points on the unit circle $|z|=1$, and k is a constant complex number. The equality (1) is known as Schwarz-Christoffel's formula.

If we put $z_{k}^{-1}=\varepsilon_{k}$, we have

$$
\begin{equation*}
\frac{d w}{d z}=C\left(1-\varepsilon_{1} z\right)^{\delta_{1}}\left(1-\varepsilon_{2} z\right)^{\delta_{2}} \cdots\left(1-\varepsilon_{2 n} z\right)^{\delta_{2 n}} \tag{2}
\end{equation*}
$$

where C is a constant, δ_{k} is equal to $1 / 2$ or $-1 / 2$ and $\sum_{k=1}^{2 n} \delta_{k}$ is equal to -2 . And square roots in (2) mean to take the branch such that $\sqrt{1}=1$. The function $\frac{d w}{d z}$ above defined is analytic for $|z|<1$ and $w=f(z)$ is analytic and univalent for $|z|<1$.

Next we consider a polygon shown in Fig. 1. In this case, we can write signs of δ_{k} in order and if we take apart suitable four minus signs, we can arrange a sequence of couples

Fig. 1 $(-+)$ or $(+-)$ as follows,

$$
\begin{equation*}
\Theta \ominus(+-)(-+) \Theta \ominus(-+)(-+)(+-)(-+)(+-) \tag{3}
\end{equation*}
$$

We shall denote a class of functions $w=f(z)$ which map the interior of unit circle respectively onto the interior of a polygon which has the nature above mentioned by the symbol S_{0}. For a function which belongs to the class S_{0}, we have the following theorem.

Theorem. Let $w=f(z)$ be a function which belongs to the class S_{0}, and let
(4)

$$
w=f(z)=A+C\left(z+A_{2} z^{2}+\cdots+A_{n} z^{n}+\cdots\right):|z|<1
$$

be the Taylor's expansion of $w=f(z)$. Then coefficients A_{n} satisfy (5)
$\left|A_{n}\right|<n: n=2,3, \cdots$.
In the proof of this theorem, we consider the following lemma.
Lemma. Let $\zeta_{k}: k=1,2 \cdots, 2 N$ be points on the unit circle such that $\zeta_{k}=e^{i \theta_{k}}\left(0 \leqq \theta_{1} \leqq \theta_{2} \leqq \cdots \leqq \theta_{2 N} \leqq 2 \pi\right)$, and $G(z)$ be a function represented by

$$
G(z)=\frac{z-\zeta_{2}}{z-\zeta_{1}} \frac{z-\zeta_{4}}{z-\zeta_{3}} \cdots \frac{z-\zeta_{2 N}}{z-\zeta_{2 N-1}} .
$$

Then, for $|z|<1$, the function $G(z)$ takes values on a half plane bordered by a line which passes the origin.

Fig. 2

Proof. In Fig. 2, when $|z|=1$, we have

$$
\arg \frac{z-\zeta_{2}}{z-\zeta_{1}}= \begin{cases}\frac{1}{2}\left(\theta_{2}-\theta_{1}\right): & z \bar{\epsilon} \overrightarrow{\zeta_{1} \zeta_{2}} \\ \frac{1}{2}\left(\theta_{2}-\theta_{1}\right)+\pi: & z \in{\overrightarrow{\zeta \zeta} \zeta_{1}}_{2}\end{cases}
$$

and when $|z|<1$, we have

$$
\frac{1}{2}\left(\theta_{2}-\theta_{1}\right)<\arg \frac{z-\zeta_{2}}{z-\zeta_{1}}<\frac{1}{2}\left(\theta_{2}-\theta_{1}\right)+\pi .
$$

Accordingly, when z varies on the unit circle, if z is not on any one of arcs $\overrightarrow{\zeta_{1} \zeta_{2}}, \vec{\zeta}_{3} \zeta_{4} \cdots \overrightarrow{\zeta_{2 N-1} \zeta_{2 N}}$, arg $G(z)$ is equal to $\Theta=\frac{1}{2}\left(-\theta_{1}+\theta_{2}-\theta_{3}+\theta_{4}-\cdots-\theta_{2 N-1}+\theta_{2 N}\right)$,
and if z is on any one of these arcs, $\arg G(z)$ is equal to $\Theta+\pi$. And when z is an interior point to the unit circle, we have $\Theta<\arg G(z)<$ $\Theta+2 \pi$. Thus the lemma has been proved.

Now we shall prove the theorem. When a function $w=f(z)$ belongs to the class $S_{0}, \frac{d w}{d z}$ can be written from (2) as follows,

$$
\begin{equation*}
\frac{d w}{d z}=C \prod_{k=1}^{4}\left(1-\varepsilon_{1 k} z\right)^{-1 / 2}\left[\prod_{\mu} \frac{1-\varepsilon_{2,2 \mu} z}{1-\varepsilon_{2,2 \mu-1} z}\right]^{1 / 2}\left[\prod_{\nu} \frac{1-\varepsilon_{3,2 \nu} z}{1-\varepsilon_{3,2 \nu-1} z}\right]^{-1 / 2}, \tag{6}
\end{equation*}
$$

where $z_{1 k}=\varepsilon_{1 k}^{-1}$ are points correspond to four minus signs removed suitably in (3), ($z_{2,2 \mu-1}=\varepsilon_{2,2 \mu-1}^{-1}, z_{2,2 \mu}=\varepsilon_{2,2 \mu}^{-1}$) are couples correspond to $(-+)$, and ($z_{3,2 \nu-1}=\varepsilon_{3,2 \nu-1}^{-1}, z_{3,2 \nu}=\varepsilon_{3,2 \nu}^{-1}$) are couples correspond to (+-) in (3).

We can verify that the Taylor's expansion of $\prod_{k=1}^{4}\left(1-\varepsilon_{1 k} z\right)^{-1 / 2}$ is majorated by $(1-z)^{-2}=1+2 z+3 z^{3}+\cdots+n z^{n-1}+\cdots$, because $(1-z)^{-1 / 2}=1+\frac{1}{2} z+\frac{3}{8} z^{2}+\cdots$ is a power series with positive coeffi-
cients. That is, if we put

$$
\prod_{k=1}^{4}\left(1-\varepsilon_{1 k} z\right)^{-1 / 2}=1+\alpha_{1} z+\alpha_{2} z^{2}+\cdots+\alpha_{n} z^{n}+\cdots
$$

we have $\left|\alpha_{n-1}\right| \leqq n$ and the equality is valid only when all $z_{1 k}$ coincide with one point.

For $|z|<1$,functions $\prod_{\mu} \frac{1-\varepsilon_{2,2 \mu} z}{1-\varepsilon_{2,2 \mu-1} z}$ and $\prod_{\mu} \frac{1-\varepsilon_{3,22} z}{1-\varepsilon_{3,2 \nu-1} z}$ in (4) take values respectively on a half plane defined in the lemma. If we define that square roots take respectively the branch such that $\sqrt{1}=1,\left[\prod_{\mu} \frac{1-\varepsilon_{2,2 \mu} z}{1-\varepsilon_{2,2 \mu-1} z}\right]^{1 / 2}$, and $\left[\prod_{\nu} \frac{1-\varepsilon_{3,22} z}{1-\varepsilon_{3, \nu-1} z}\right]^{-1 / 2}$ take values respectively on a quarter plane bordered by two lines meet at right angle in the origin. Accordingly, for $|z|<1$, the function $\left[\prod_{\mu} \frac{1-\varepsilon_{2,2 \mu} z}{1-\varepsilon_{2,2 \mu-1} z}\right]^{1 / 2}$ $\left[\prod_{\nu} \frac{1-\varepsilon_{3,2 \nu} z}{1-\varepsilon_{3,2 \nu-1} z}\right]^{-1 / 2}$ takes values on a half plane bordered by a line which passes the origin.

As the half plane contains the unit in its interior, the product of this function and $e^{i \varphi}\left(-\frac{\pi}{2}<\varphi<\frac{\pi}{2}\right)$ takes values which have positive real parts for $|z|<1$. If we write the Taylor's expansion of this function as follows,

$$
\begin{align*}
{\left[\prod_{\mu} \frac{1-\varepsilon_{2,2 \mu} z}{1-\varepsilon_{2,2 \mu-1} z}\right]^{1 / 2}\left[\prod_{\nu}\right.} & \left.\frac{1-\varepsilon_{3,22} z}{1-\varepsilon_{3,2 \nu-1} z}\right]^{-1 / 2} \tag{7}\\
& =1+\beta_{1} z+\beta_{2} z^{2}+\cdots+\beta_{n} z^{n}+\cdots,
\end{align*}
$$

it is known that inequalities $\left|e^{i \varphi} \beta_{n}\right| \leqq 2 \cos \varphi \leqq 2$ follow, that is, we have $\left|\beta_{n}\right| \leqq 2$. Now we can verify that the Taylor's expansion (7) is majorated by $\frac{1+z}{1-z}=1+2 z+2 z^{2}+\cdots+2 z^{n}+\cdots$.

Accordingly, the Taylor's expansion

$$
\frac{1}{C} \frac{d w}{d z}=1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots:|z|<1
$$

can be majorated by

$$
\begin{aligned}
& \frac{1}{(1-z)^{2}} \frac{1+z}{1-z} \\
& \quad=1+2^{2} z+3^{2} z^{2}+\cdots+n^{2} z^{n-1}+\cdots,
\end{aligned}
$$

and we have $\left|a_{n-1}\right|<n^{2} . \quad\left|A_{n}\right|=\frac{\left|a_{n-1}\right|}{n}<n$ follows at once. Thus the theorem has been established.

Remark. The equality $\left|A_{n}\right|=n$ can

Fig. 3
be satisfied only when $z_{1}=z_{2}=z_{3}=z_{6}=z_{7}=z_{8}=\varepsilon, z_{4}=z_{5}=-\varepsilon \quad(|\varepsilon|=1)$ as the limit case of a polygon in Fig. 3.

