165. On Paracompactness and Metrizability of Spaces

By Yûkiti KATUTA

Ehime University

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1967)

1. Introduction. In the previous note [3], we have introduced the notion of an order locally finite collection of subsets of a topological space. This is defined as follows. A collection $\{A_{\lambda} \mid \lambda \in \Lambda\}$ of subsets of a topological space is called *order locally finite*, if we can introduce a total order < in the index set Λ such that for each $\lambda \in \Lambda \{A_{\mu} \mid \mu < \lambda\}$ is locally finite at each point of A_{λ} . It is obvious that every σ -locally finite collection is order locally finite.¹

The purpose of this note is prove the following theorems.

Theorem 1. Let X be a regular space. If there is an order locally finite open covering $\{G_{\lambda} \mid \lambda \in \Lambda\}$ of X such that for each λ the closure \overline{G}_{λ} of G_{λ} is paracompact, then X is paracompact.²⁾

Theorem 2. Let X be a regular space. If there is an order locally finite open covering $\{G_{\lambda} \mid \lambda \in A\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is compact and G_{λ} (more generally, every closed subset of X contained in G_{λ}) is paracompact, then X is paracompact.

Theorem 3. Let X be a collectionwise normal T_1 -space. If there is an order locally finite open covering $\{G_{\lambda} | \lambda \in A\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is paracompact and G_{λ} (more generally, every closed subset of X contained in G_{λ}) is paracompact, then X is paracompact.

Theorem 4. Let X be a collectionwise normal T_1 -space. If there are a closed covering $\{F_{\lambda} | \lambda \in A\}$ and an order locally finite open covering $\{G_{\lambda} | \lambda \in A\}$ of X such that for each $\lambda \ F_{\lambda} \subset G_{\lambda}$ and F_{λ} is paracompact, then X is paracompact.

Applying the metrization theorem of J. Nagata [6] and Yu. M. Smirnov [7] that a space which is the union of a locally finite collection of closed metrizable subsets is metrizable, from Theorems 1, 2, and 3 we obtain immediately the following Theorems 5, 6, and 7 respectively.

Theorem 5. Let X be a regular space. If there is an order

¹⁾ H. Tamano [9] has introduced the notion of *linearly locally finite* collections. By definition, every σ -locally finite collection is linearly locally finite and every linearly locally finite collection is order locally finite (but not conversely).

²⁾ This theorem has been proved by Tamano [9] in the case when X is a completely regular T_1 -space and $\{G_{\lambda} | \lambda \in \Lambda\}$ is lineary locally finite.

locally finite open covering $\{G_{\lambda} \mid \lambda \in \Lambda\}$ of X such that for each λ the closure \overline{G}_{λ} of G_{λ} is metrizable, then X is metrizable.

Theorem 6. Let X be a regular space. If there is an order locally finite open covering $\{G_{\lambda} \mid \lambda \in \Lambda\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is compact and G_{λ} is metrizable, then X is metrizable.

Theorem 7. Let X be a collectionwise normal T_1 -space. If there is an order locally finite open covering $\{G_{\lambda} \mid \lambda \in A\}$ of X such that for each λ the boundary $\mathfrak{B}(G_{\lambda})$ of G_{λ} is paracompact and G_{λ} is metrizable, then X is metrizable.

Theorems 6 and 7 are generalizations of A. H. Stone's theorem [8, Theorem 3] and S. Hanai's theorem [2, Theorem 7], respectively.

2. Lemmas. Lemma 1. Let $\{A_{\lambda} | \lambda \in \Lambda\}$ be an order locally finite collection of subsets of a topological space X, and let $\{B_{\xi} | \xi \in \Xi_{\lambda}\}$ be a collection of subsets of A_{λ} which is locally finite in X for each $\lambda \in \Lambda$. Then the collection $\{B_{\xi} | \xi \in \Xi_{\lambda}, \lambda \in \Lambda\}$ is order locally finite.

Lemma 2. A regular space X is paracompact if and only if any open covering of X has an order locally finite open refinement. Lemmas 1 and 2 have been proved in $\lceil 3 \rceil$.

Lemma 3. Let X be a regular space and let X be the union of two subsets A and B. If A is compact and B (more generally, every closed subset of X contained in B) is paracompact, then X is paracompact.

Proof. Let $\mathfrak{U}_{\tau} | \gamma \in \Gamma$ be an arbitrary open covering of X. By E. Michael [4, Lemma 1], we need only prove that \mathfrak{U} has a locally finite refinement. Since A is compact, it is covered by finitely many U_{τ} ; let these be U_1, \dots, U_n . Put $F = X - (U_1 \cup \dots \cup U_n)$, then F is a closed subset of X contained in B and hence F is paracompact. Therefore the open covering $\{F \cap U_{\tau} | \gamma \in \Gamma\}$ of F has a locally finite refinement \mathfrak{B} . Since F is closed in X, \mathfrak{B} is locally finite in X. Thus the collection $\{U_1, \dots, U_n\} \cup \mathfrak{B}$ is a locally finite refinement of \mathfrak{U} . This completes the proof.

Lemma 4. Let X be a collectionwise normal space and let X be the union of two subsets A and B. If A is a paracompact closed subset and B (more generally, every closed subset of X contained in B) is paracompact, then X is paracompact.³⁾

Proof. Let $\mathfrak{U} = \{U_r \mid \gamma \in \Gamma\}$ be an arbitrary open covering of X. Since A is paracompact, the open covering $\{A \cap U_r \mid \gamma \in \Gamma\}$ of A has a locally finite open refinement $\{V_{\delta} \mid \delta \in A\}$. By C. H. Dowker [1, Lemma 1], there exists a locally finite open covering $\{W_{\delta} \mid \delta \in A\}$ of

³⁾ This lemma has been stated by K. Morita [5, Lemma 1].

X such that $A \cap W_{\delta} \subset V_{\delta}$ for each δ . Corresponding to each $\delta \in \Delta$ we choose $\gamma(\delta) \in \Gamma$ such that $V_{\delta} \subset A \cap U_{\gamma(\delta)}$, and we put $S_{\delta} = W_{\delta} \cap U_{\gamma(\delta)}$. Obviously, $\mathfrak{S} = \{S_{\delta} \mid \delta \in \Delta\}$ is a locally finite open collection which covers A. Put $A' = X - \bigcup \{S_{\delta} \mid \delta \in \Delta\}$, then A' is a closed subset of X contained in B and hence A' is paracompact. Similarly, we obtain a locally finite open collection \mathfrak{S}' such that \mathfrak{S}' covers A' and each element of \mathfrak{S}' is a subset of some element of \mathfrak{U} . Thus the collection $\mathfrak{S} \cup \mathfrak{S}'$ is a locally finite open refinement of \mathfrak{U} . This completes the proof.

3. Proof of Theorem 1. Let $\mathfrak{U} = \{U_r \mid \delta \in \Gamma\}$ be an arbitrary open covering of X. Since \overline{G}_{λ} is paracompact for each λ , the open covering $\{\overline{G}_{\lambda} \cap U_r \mid \gamma \in \Gamma\}$ of \overline{G}_{λ} has a locally finite open refinement $\{V_{\varepsilon} \mid \xi \in \Xi_{\lambda}\}$. Since \overline{G}_{λ} is closed in X, it is locally finite in X. Put $W_{\varepsilon} = V_{\varepsilon} \cap G_{\lambda}$ for $\xi \in \Xi_{\lambda}$. Of course, $\{W_{\varepsilon} \mid \xi \in \Xi_{\lambda}\}$ is locally finite in X. Therefore by Lemma 1 the collection $\{W_{\varepsilon} \mid \xi \in \Xi_{\lambda}, \lambda \in \Lambda\}$ is order locally finite. It is obvious that it is a refinement of \mathfrak{U} . Since V_{ε} is open in \overline{G}_{λ} and G_{λ} is open in X, W_{ε} is open in X for each $\xi \in \Xi_{\lambda}, \lambda \in \Lambda$. Thus, by Lemma 2, the proof is completed.

4. Proofs of Theorems 2 and 3. Theorem 2 is an immediate consequence of Theorem 1 and Lemma 3, and Theorem 3 is an immediate consequence of Theorem 1 and Lemma 4.

5. Proof of Theorem 4. Let $\mathfrak{U} = \{U_{\tau} \mid \gamma \in \Gamma\}$ be an arbitrary open covering of X. Since F_{λ} is paracompact for each λ , the open covering $\{F_{\lambda} \cap U_{\tau} \mid \gamma \in \Gamma\}$ of F_{λ} has a locally finite open refinement $\{V_{\varepsilon} \mid \xi \in \Xi_{\lambda}\}$. By Dowker [1, Lemma 1], there exists a locally finite open covering $\{W_{\varepsilon} \mid \xi \in \Xi_{\lambda}\}$ of X such that $F_{\lambda} \cap W_{\varepsilon} \subset V_{\varepsilon}$ for each $\xi \in \Xi_{\lambda}$. Corresponding to each $\xi \in \Xi_{\lambda}$ we choose $\gamma(\xi) \in \Gamma$ such that $V_{\varepsilon} \subset F_{\lambda} \cap U_{\tau(\varepsilon)}$, and we put $S_{\varepsilon} = G_{\lambda} \cap W_{\varepsilon} \cap U_{\tau(\varepsilon)}$. Then each S_{ε} is open in X and $\{S_{\varepsilon} \mid \xi \in \Xi_{\lambda}\}$ is locally finite in X. Since $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is order locally finite, by Lemma 1 the collection $\{S_{\varepsilon} \mid \xi \in \Xi_{\lambda}, \lambda \in \Lambda\}$ is order locally finite.

Now for each $\xi \in \Xi_{\lambda}$

$$S_{\epsilon} \!=\! G_{\lambda} \cap W_{\epsilon} \cap U_{r^{(\epsilon)}} \!\supset\! F_{\lambda} \cap W_{\epsilon} \cap U_{r^{(\epsilon)}}$$

 $= (F_{\lambda} \cap W_{\varepsilon}) \cap (F_{\lambda} \cap U_{\tau(\varepsilon)}) \supset (F_{\lambda} \cap W_{\varepsilon}) \cap V_{\varepsilon} = F_{\lambda} \cap W_{\varepsilon}.$

Since for each $\lambda \in \Lambda$ $\{W_{\varepsilon} | \xi \in \Xi_{\lambda}\}$ is a covering of X and $\{F_{\lambda} | \lambda \in \Lambda\}$ is also a covering of X, $\{S_{\varepsilon} | \xi \in \Xi_{\lambda}, \lambda \in \Lambda\}$ is a covering of X. It is obvious that it refines \mathfrak{U} . Thus, by Lemma 2, the proof is completed.

Remark. From Theorem 4, we obtain the following:

Let X be a collectionwise normal T_1 -space. If there is a σ -locally finite closed covering $\{F_{\lambda} | \lambda \in A\}$ of X such that each F_{λ} is paracompact, then X is paracompact.

In this result, " σ -locally finite" cannot be, however, replaced by "order locally finite". In fact, let X be the space of all ordinal numbers less than the first uncountable ordinal number with the usual topology; then the collection of all subsets of X, each of which consists of one point, is an order locally finite closed covering of X. As is well known, X is a collectionwise normal T_1 -space but X is not paracompact.

References

- [1] C. H. Dowker: On a theorem of Hanner. Ark. Mat., 2, 307-313 (1952).
- [2] S. Hanai: Open mappings and metrization theorems. Proc. Japan Acad., 39, 450-454 (1963).
- [3] Y. Katuta: A theorem on paracompactness of product spaces. Proc. Japan Acad., 43, 615-618 (1967).
- [4] E. Michael: A note on paracompact spaces. Proc. Amer. Math. Soc., 4, 831-838 (1953).
- [5] K. Morita: On closed mappings. Proc. Japan Acad., 32, 539-543 (1956).
- [6] J. Nagata: On a necessary and sufficient condition of metrizability. J. Inst. Polytech. Osaka City Univ., 1, 93-100 (1950).
- Yu. M. Smirnov: On metrization of topological spaces. Uspehi Mat. Nauk, 6, 100-111 (1951).
- [8] A. H. Stone: Metrizability of unions of spaces. Proc. Amer. Math. Soc., 10, 361-366 (1959).
- [9] H. Tamano: Note on paracompactness. J. Math. Kyoto Univ., 3, 137–143 (1963).