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193. On Free Abelian re.Groups.

By F. M. SIOSON
University of Ateneo de Manila, Manila

(Comm. by Kinjir6 KUNUGI, M.J.A., Nov. 13, 1967)

In this article, the notions of free abelian m-group and the tensor
product of abelian m-groups will be introduced and their more
immediate properties are developed.

Recall that
Definition. An algebraic system (M, ) .or simply M is called

an m-semigroup if and only if [ " M--M satisfies the m-associa-
tive law, i.e.
EExx.. x3x+. x._,5-Exx.. x,Ex+x+. x+3x++.
for each i- 1, 2, ..., m- 1 and all x, x., ..., x_ e M.

The m-ary operation E ] can be extended in a natural way to
an n-ary operation, where n is greater than m and such that n--1
(mod m-l). This is done by defining

Fxx.... x-E... [Exx... xx+.., x._l_ x
for all x, x., ..., x e M and n 1 (mod m- 1). The following gener-
alized associative law holds for m-semigroups (see R. H. Bruck E2]):

Fxx.... xl -Exx... xFx+x+..., xx+...
for n-- 1 (rood m- 1), 1 <j- i 1 (mod m- 1), and all x, x., ..., x e M.

For convenience, one may designate {k}- k(m- 1) + 1 and
x<>-Exx x<>3 with x,_-x.-...-x<>-x. Observe that the follow-
ing exponential laws hold in any m-semigroup: (1)(x<>)<>-x<(-)++>
and (2) [x<>x<> x<>]-X*l++’"++>.

Definition. An (m- 1)-tuple (u, u., ..., u_) of elements from
an m-semigroup (M, F_ ]) is called an (m-1)-adic identity of M if
and only if Exuu.... u_-x-Euu..., u_x3 for all x e M. In a
similar manner, for any n 1 (rood m- 1), the notion of a (n- 1)-adic
identity of M may be defined.

Note that (u, u., ..., u(_)) is a k(m-1)-adic identity if and
only if (uu u(_)(_)u(_)(_)+, ..., u(_)) is an (m-1)-adic
identity.

Definition. An m-semigroup (M, [ ) is an m-group if and
only if

(a) for u,u,...u_eM, there exists a ueM such that
(u, u,..., u_, u) is an (m-1)-adic identity of M;

(b) for u, u., u_.eM, there exists a ueM such that
(u, u,..., u_) is an (m-1)-adic identity of M.
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Observe that if Fugue... u_a]-a for a fixed aeM, so
that for any a., ..., a_ e M there exists an a_ e M such that
(a,a., ..., a_) is an (m-1)-adic identity, then F_uu u_x]
Euu2"" u_Eaa2.., a_x]] EEuu.’" u,,_a]a2.., a_x] [aa
a,_x-x for all x e M. From this it follows that if (u, u., ...,

u_, u) is an (m-1)-adic identity, so that, in particular, [uu...
u_.u-u, then [uu u_x-x for all x eM. Hence, if (u, u,
.., u_, v) is another (m-1)-identity, then u-[uu.., u,_v-v.

In exactly the same manner, this time using (b) in the definition,
if (u’, u, ..., u_) and (v’, u, ..., u_) are both (m-1)-adic identities
then u’-v’. Suppose, now, that (u, ..., u_., u) and (u’, u,..., u_)
are both (m-1)-adic identities. As we have previously shown, the
first of these implies that [uu... u_x-x for all x e M, while
the second implies [xu...u,,_.u’-x for all x e M. Choosing x-u’
in the first and x-u in the second, we obtain u-[uu.., u_u’-u’.
Finally, we have thus shown that for u,..., u_ e M, there exists

--1uniquely a u-(u ..., -2) M such that both (u, ,u_2,

and (u, u, ..., u_) are (m-1)-adic identities. This also proves
that our definition of an m-group is equivalent to that of D. Boccioni

Incidentally, the above results also show that an m-group may
be defined as an algebraic system (M, [ , )-) such that (M,
is an m-semigroup and )-: M-M is an (m-1)-ary operation
such that xx x_(x, x, ., x_) [(x, x, ., x_)-xx

X - X -Xo_.X] [XX X_.(X X., _) ] Fx(x, x., _) x x_]
=x for all x, x, x., ..., x_ e M. Whence

Theorem 1. The family of all m-groups is an equational or
primitive class.

One further concludes from the above discussions that if (u,, ...,
u_., u_) is an (m-1)-adic identity, then (u_, u, ..., u_) is also
an (m-1)-adic identity. By iteration, we obtain the result that
(u, ..., u_, u(_) is an (m-1)-adic identity for all powers a
of the permutation (12... m-l).

As an example of an m-group, consider the following. Let X,
X,-.., X_ be sets of the same cardinality. Denote by S(X, X.,
.., X_) the collection of all one-to-one functions f on [9 X onto

i----1

itself such that f(X)- X() for all i- 1, ..., m- 1, where a is the
cyclic permutation (12... m-l). Under the operation defined by

[ff... f]-fofo of,
S(X, X., ..., X_) is clearly an m-semigroup. If fi, f, ..., f,_.
e S(X, X., ..., X_), then f ft. f_-f is a one-to-one func-
tion such that f(Z)-Z_,f(S.)-S, ...,f(Z_)-Z_ and hence
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f-e S(X, X., ..., X_.). Both (f-, fi, ..., f_) and (fi, ..., f_,
f-) are m-adic identities of S(X, X, ..., X_).

For self-containment, we shall state and prove the following two
results which will be used later.

Theorem 2. Every m-group (M, ) is isomorphic to an m-
group of functions.

Proof. For each i- 1, ..., m- 1, defined a relation on the
cartesian product MM M (/-times) such that (al, a, ..., a)

i
(b, b., ..., b) if and only if aa... ax+.., x=bb....
bx+ for all x+, x+., ..., x e M. Observe that if aa
ac+.., c-bb..., bc+.., c for some fixed c+, ..., c e M,
so that (c, c,..., c) is an (m-1)-adic identity, then
aa. ax+ x-aa. ac+ cc..., c+ x

-aa...ac+...cc.... cx+ x
=bb... bc+ cc..., cx+ x
=[bb. b[c+ cc.., cx+x+.., x
=[bb... bx/ x

for all x+, ..., x e M.
It is easy to see that /- for each i-1, 2, ..., m-1 is an equiv-

alence relation on MM M (i times). Set X-MM
M/. Note that M//-X.-M since (a)/-(b) if and only if

a-b. Now, consider the transformation m-group S(X, X,..., X_).
For each x e M, define f by f((x, ..., x)/..)-(x, ..., x,

m-1 1
for i-1, 2, ..., m-2 and f((x, ..., x_)//-/)-[xx...x_x//

i i
for i-m-1. Suppose f((x,...x)//z)-f((y,...,y)///) so

that (x, ..., x, x ,..., , x). his means that for all x+.,
.., x Mwe have x... xxx/.., x-... xx./.... x and

hence (x, ..., x)@, ., ) or (x, .., x)/,-@, ., )/,,’.
Thus, f is one-to-one. o show that f is onto, consider any

,,i+1
(a, ..., a+)/.. Choose a+., ..., a_ e M such that (a, ...,a_)
is an (m-1)-adic identity and choose b, ..., b e M such that (x, a+.,
.., a_, bl, ..., b) and lence (b, ..., b, x, a+., ..., a_l) is an (m- 1)-

i
adic identity. Then f((b, ..., b)/)- (b, ..., b, x)/,:/- (a, ...,

i+1
a+)//. A variation of this argument will show that in general

f is onto.
Define h" M---S(X, X., ..., X_I) by h(x)=f. If f-f and

(u, ..., u_) is any (m-1)-adic identity, then x-[u u_x
=[u...U_ly_-y, that is, h is one-to-one. Moreover, h([XlX....x)
=f,... fofo f- ff f] h(x)h(x) h(x)]
for all x, x., ..., x e M.
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Theorem : (Post Coset Theorem). Every m-group M is a
coset Nx-xN=:M of a (2-group) group G by a normal subgroup
N=M- whose index is a divisor of m-1. Moreover, G/N is a
cyclic group generated by M and G-M UM M-.

Proof. By Theorem 2, M is isomorphic to and hence may be

identified with a subset of the symmetric group S(UX) of all one-
m--I

to-one transformations of the set UX onto itself. The operation

in M is an extension of the operation of composition in this group.

Let G be the least subgroup of S(U X) containing M. Since M M,
i=1

then note that G-MMU M-. If geG such that g-xx
x for x, ..., x e M and i =<m- 2, then g--x+ x_ for x+,

.., x__ e M with the property that xx..., x_=l or (x, x, ...,
x_) is an (m-1)-adic identity. Hence gM-g-MM-M--
M-. On the other hand, if g e G and g e M- so that g- e M-,-- - Thus, M- is a normalthen gM g M M 1M- M-subgroup of G. Now, if xx x_.x-1 or (x, x., ..., x_, x) is an

(m-1)-adic identity, then M=Mxx.... x_.x=M-x-M-M.
Whence M-x-M. The rest of the conclusions follow.


