193. On Free Abelian m-Groups. I

By F. M. SIOSON

University of Ateneo de Manila, Manila

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

In this article, the notions of free abelian m-group and the tensor product of abelian m-groups will be introduced and their more immediate properties are developed.

Recall that

Definition. An algebraic system (M, []) or simply M is called an *m*-semigroup if and only if $[]: M^m \rightarrow M$ satisfies the *m*-associative law, i.e.

 $\begin{bmatrix} [x_1x_2\cdots x_m]x_{m+1}\cdots x_{2m-1}] = [x_1x_2\cdots x_i[x_{i+1}x_{i+2}\cdots x_{i+m}]x_{i+m+1}\cdots x_{2m-1}] \\ \text{for each } i=1, 2, \cdots, m-1 \text{ and all } x_1, x_2, \cdots, x_{2m-1} \in M. \end{bmatrix}$

The *m*-ary operation [] can be extended in a natural way to an *n*-ary operation, where *n* is greater than *m* and such that $n \equiv 1 \pmod{m-1}$. This is done by defining

 $[x_1x_2\cdots x_n] = [\cdots [[x_1x_2\cdots x_m]x_{m+1}\cdots x_{2m-1}]\cdots x_n]$ for all $x_1, x_2, \cdots, x_n \in M$ and $n \equiv 1 \pmod{m-1}$. The following generalized associative law holds for *m*-semigroups (see R. H. Bruck [2]):

 $[x_1x_2\cdots x_m] = [x_1x_2\cdots x_i[x_{i+1}x_{i+2}\cdots x_j]x_{j+1}\cdots x_n]$ for $n \equiv 1 \pmod{m-1}$, $1 < j-i \equiv 1 \pmod{m-1}$, and all $x_1, x_2, \cdots, x_n \in M$.

For convenience, one may designate $\langle k \rangle = k(m-1)+1$ and $x^{\langle k \rangle} = [x_1 x_2 \cdots x_{\langle k \rangle}]$ with $x_1 = x_2 = \cdots = x_{\langle k \rangle} = x$. Observe that the following exponential laws hold in any *m*-semigroup: (1) $(x^{\langle k \rangle})^{\langle k \rangle} = x^{\langle hk(m-1)+h+k \rangle}$ and (2) $[x^{\langle k_1 \rangle} x^{\langle k_2 \rangle} \cdots x^{\langle k_m \rangle}] = x^{\langle k_1+k_2+\cdots+k_m+1 \rangle}$.

Definition. An (m-1)-tuple $(u_1, u_2, \dots, u_{m-1})$ of elements from an *m*-semigroup (M, []) is called an (m-1)-adic identity of M if and only if $[xu_1u_2\cdots u_{m-1}]=x=[u_1u_2\cdots u_{m-1}x]$ for all $x \in M$. In a similar manner, for any $n\equiv 1 \pmod{m-1}$, the notion of a (n-1)-adic identity of M may be defined.

Note that $(u_1, u_2, \dots, u_{k(m-1)})$ is a k(m-1)-adic identity if and only if $([u_1u_2 \dots u_{(k-1)(m-1)}u_{(k-1)(m-1)+1}], \dots, u_{k(m-1)})$ is an (m-1)-adic identity.

Definition. An *m*-semigroup (M, []) is an *m*-group if and only if

(a) for $u_1, u_2, \dots, u_{m-2} \in M$, there exists a $u \in M$ such that $(u_1, u_2, \dots, u_{m-2}, u)$ is an (m-1)-adic identity of M;

(b) for $u_1, u_2, \dots, u_{m-2} \in M$, there exists a $u \in M$ such that (u, u_1, \dots, u_{m-2}) is an (m-1)-adic identity of M.

No. 9]

Observe that if $[u_1u_2\cdots u_{m-1}a_1]=a_1$ for a fixed $a_1 \in M$, so that for any $a_2, \dots, a_{m-2} \in M$ there exists an $a_{m-1} \in M$ such that $(a_1, a_2, \dots, a_{m-1})$ is an (m-1)-adic identity, then $[u_1u_2 \cdots u_{m-1}x]$ $= [u_1u_2 \cdots u_{m-1}[a_1a_2 \cdots a_{m-1}x]] = [[u_1u_2 \cdots u_{m-1}a_1]a_2 \cdots a_{m-1}x] = [a_1a_2 \cdots a_{m-1}x]$ $\cdots a_{m-1}x$] = x for all $x \in M$. From this it follows that if (u_1, u_2, \cdots, u_n) u_{m-2} , u) is an (m-1)-adic identity, so that, in particular, $[uu_1 \cdots$ $u_{m-2}u] = u$, then $[uu_1 \cdots u_{m-2}x] = x$ for all $x \in M$. Hence, if $(u_1, u_2, u_3) = x$ \dots, u_{m-2}, v is another (m-1)-identity, then $u = [uu_1 \cdots u_{m-2}v] = v$. In exactly the same manner, this time using (b) in the definition, if $(u', u_1, \dots, u_{m-2})$ and $(v', u_1, \dots, u_{m-2})$ are both (m-1)-adic identities then u'=v'. Suppose, now, that (u_1, \dots, u_{m-2}, u) and $(u', u_1, \dots, u_{m-2})$ are both (m-1)-adic identities. As we have previously shown, the first of these implies that $[uu_1 \cdots u_{m-2}x] = x$ for all $x \in M$, while the second implies $[xu_1 \cdots u_{m-2}u'] = x$ for all $x \in M$. Choosing x = u'in the first and x = u in the second, we obtain $u = [uu_1 \cdots u_{m-2}u'] = u'$. Finally, we have thus shown that for $u_1, \dots, u_{m-2} \in M$, there exists uniquely a $u = (u_1, \dots, u_{m-2})^{-1} \in M$ such that both (u_1, \dots, u_{m-2}, u) and (u, u_1, \dots, u_{m-2}) are (m-1)-adic identities. This also proves that our definition of an *m*-group is equivalent to that of D. Boccioni **[1**].

Incidentally, the above results also show that an *m*-group may be defined as an algebraic system $(M, [], ()^{-1})$ such that (M, [])is an *m*-semigroup and $()^{-1}$: $M^{m-2} \rightarrow M$ is an (m-1)-ary operation such that $[x_1x_2 \cdots x_{m-2}(x_1, x_2, \cdots, x_{m-2})^{-1}x] = [(x_1, x_2, \cdots, x_{m-2})^{-1}x_1x_2 \cdots x_{m-2}x] = [xx_1 \cdots x_{m-2}(x_1, x_2, \cdots, x_{m-2})^{-1}] = [x(x_1, x_2, \cdots, x_{m-2})^{-1}x_1 \cdots x_{m-2}]$ = x for all $x, x_1, x_2, \cdots, x_{m-2} \in M$. Whence

Theorem 1. The family of all m-groups is an equational or primitive class.

One further concludes from the above discussions that if $(u_1, \dots, u_{m-2}, u_{m-1})$ is an (m-1)-adic identity, then $(u_{m-1}, u_1, \dots, u_{m-2})$ is also an (m-1)-adic identity. By iteration, we obtain the result that $(u_{\sigma(1)}, \dots, u_{\sigma(m-2)}, u_{\sigma(m-1)})$ is an (m-1)-adic identity for all powers σ of the permutation $(12 \cdots m-1)$.

As an example of an *m*-group, consider the following. Let X_1 , X_2, \dots, X_{m-1} be sets of the same cardinality. Denote by $S(X_1, X_2, \dots, X_{m-1})$ the collection of all one-to-one functions f on $\bigcup_{i=1}^{m-1} X_i$ onto itself such that $f(X_i) = X_{\sigma(i)}$ for all $i = 1, \dots, m-1$, where σ is the cyclic permutation $(12 \dots m-1)$. Under the operation defined by $[f_1 f_2 \dots f_m] = f_1 \circ f_2 \circ \dots \circ f_m$,

 $S(X_1, X_2, \dots, X_{m-1})$ is clearly an *m*-semigroup. If $f_1, f_2, \dots, f_{m-2} \in S(X_1, X_2, \dots, X_{m-1})$, then $f_1 \circ f_2 \circ \dots \circ f_{m-2} = f$ is a one-to-one function such that $f(S_1) = S_{m-1}, f(S_2) = S_1, \dots, f(S_{m-1}) = S_{m-2}$ and hence

 $f^{-1} \in S(X_1, X_2, \dots, X_{m-2})$. Both $(f^{-1}, f_1, \dots, f_{m-2})$ and $(f_1, \dots, f_{m-2}, f^{-1})$ are *m*-adic identities of $S(X_1, X_2, \dots, X_{m-1})$.

For self-containment, we shall state and prove the following two results which will be used later.

Theorem 2. Every m-group (M, []) is isomorphic to an m-group of functions.

Proof. For each $i = 1, \dots, m-1$, defined a relation $\stackrel{i}{\longrightarrow}$ on the cartesian product $M \times M \times \cdots \times M$ (*i*-times) such that (a_1, a_2, \dots, a_i) $\stackrel{i}{\longrightarrow} (b_1, b_2, \dots, b_i)$ if and only if $[a_1a_2 \cdots a_ix_{i+1} \cdots x_m] = [b_1b_2 \cdots b_ix_{i+1} \cdots x_m]$ for all $x_{i+1}, x_{i+2}, \dots, x_m \in M$. Observe that if $[a_1a_2 \cdots a_ic_{i+1} \cdots c_m] = [b_1b_2 \cdots b_ic_{i+1} \cdots c_m]$ for some fixed $c_{i+1}, \dots, c_m \in M$, so that (c_2, c_3, \dots, c_m) is an (m-1)-adic identity, then

$$\begin{bmatrix} a_1 a_2 \cdots a_i x_{i+1} \cdots x_m \end{bmatrix} = \begin{bmatrix} a_1 a_2 \cdots a_i \begin{bmatrix} c_{i+1} \cdots c_m c_2 \cdots c_i x_{i+1} \end{bmatrix} \cdots x_m \end{bmatrix}$$
$$= \begin{bmatrix} [a_1 a_2 \cdots a_i c_{i+1} \cdots c_m] c_2 \cdots c_i x_{i+1} \cdots x_m]$$
$$= \begin{bmatrix} [b_1 b_2 \cdots b_i c_{i+1} \cdots c_m] c_2 \cdots c_i x_{i+1} \cdots x_m]$$
$$= \begin{bmatrix} b_1 b_2 \cdots b_i \begin{bmatrix} c_{i+1} \cdots c_m c_2 \cdots c_i x_{i+1} \end{bmatrix} x_{i+2} \cdots x_m]$$
$$= \begin{bmatrix} b_1 b_2 \cdots b_i x_{i+1} \cdots x_m \end{bmatrix}$$

for all $x_{i+1}, \dots, x_m \in M$.

It is easy to see that $\stackrel{i}{\sim}$ for each $i=1, 2, \dots, m-1$ is an equivalence relation on $M \times M \times \cdots \times M$ (*i* times). Set $X_i = M \times M \times \cdots$ $\times M/\overset{i}{\sim}$. Note that $M/\overset{1}{\sim}=X_1=M$ since (a) $\overset{1}{\sim}$ (b) if and only if a=b. Now, consider the transformation *m*-group $S(X_1, X_2, \dots, X_{m-1})$. For each $x \in M$, define f_x by $f_x((x_1, \dots, x_i)/\underbrace{i}_{i}) = (x_1, \dots, x_i, x)/\underbrace{i+1}_{i}$ for $i=1, 2, \dots, m-2$ and $f_x((x_1, \dots, x_{m-1})/\underbrace{m-1}_{i}) = [x_1x_2 \cdots x_{m-1}x]/\underbrace{i}_{i}$ for i=m-1. Suppose $f_x((x_1,\cdots,x_i)/\overset{i}{\sim})=f_x((y_1,\cdots,y_i)/\overset{i}{\sim})$ so that $(x_1, \dots, x_i, x) \xrightarrow{i+1} (y_1, \dots, y_i, x)$. This means that for all x_{i+2} , $\cdots, x_m \in M$ we have $[x_1 \cdots x_i x x_{i+2} \cdots x_m] = [y_1 \cdots y_i x x_{i+2} \cdots x_m]$ and hence $(x_1, \dots, x_i) \overset{i}{\sim} (y_1, \dots, y_i)$ or $(x_1, \dots, x_i) / \overset{i}{\sim} = (y_1, \dots, y_i) / \overset{i}{\sim}$. Thus, f_x is one-to-one. To show that f_x is onto, consider any $(a_1, \dots, a_{i+1})/\overset{i+1}{\sim}$. Choose $a_{i+2}, \dots, a_{m-1} \in M$ such that (a_1, \dots, a_{m-1}) is an (m-1)-adic identity and choose $b_1, \dots, b_i \in M$ such that $(x, a_{i+2}, \dots, b_i) \in M$ \cdots , a_{m-1} , b_1 , \cdots , b_i) and hence $(b_1, \cdots, b_i, x, a_{i+2}, \cdots, a_{m-1})$ is an (m-1)adic identity. Then $f_x((b_1, \dots, b_i)/\overset{i}{\frown}) = (b_1, \dots, b_i, x)/\overset{i+1}{\frown} = (a_1, \dots, b_i, x)/\overset{i}{\frown} = (a_1, \dots, a_i, x)/\overset{i}{$ $(a_{i+1})/\overset{i+1}{\sim}$. A variation of this argument will show that in general f_x is onto.

Define $h: M \rightarrow S(X_1, X_2, \dots, X_{m-1})$ by $h(x) = f_x$. If $f_x = f_y$ and (u_1, \dots, u_{m-1}) is any (m-1)-adic identity, then $x = [u_1 \cdots u_{m-1}x] = [u_1 \cdots u_{m-1}y] = y$, that is, h is one-to-one. Moreover, $h([x_1x_2 \cdots x_m]) = f_{[x_1x_2 \cdots x_m]} = f_{x_1} \circ f_{x_2} \circ \cdots \circ f_{x_m} = [f_{x_1}f_{x_2} \cdots f_{x_m}] = [h(x_1)h(x_2) \cdots h(x_m)]$ for all $x_1, x_2, \dots, x_m \in M$.

Theorem 3 (Post Coset Theorem). Every m-group M is a coset Nx = xN = M of a (2-group) group G by a normal subgroup $N = M^{m-1}$ whose index is a divisor of m-1. Moreover, G/N is a cyclic group generated by M and $G = M \cup M^2 \cup \cdots \cup M^{m-1}$.

Proof. By Theorem 2, M is isomorphic to and hence may be identified with a subset of the symmetric group $S(\bigcup_{i=1}^{m-1}X_i)$ of all oneto-one transformations of the set $\bigcup_{i=1}^{m-1}X_i$ onto itself. The operation in M is an extension of the operation of composition in this group. Let G be the least subgroup of $S(\bigcup_{i=1}^{m-1}X_i)$ containing M. Since $M^m = M$, then note that $G = M \cup M^2 \cup \cdots \cup M^{m-1}$. If $g \in G$ such that $g = x_1x_2$ $\cdots x_i$ for $x_1, \cdots, x_i \in M$ and $i \leq m-2$, then $g^{-1} = x_{i+1} \cdots x_{m-1}$ for x_{i+1} , $\cdots, x_{m-1} \in M$ with the property that $x_1x_2 \cdots x_{m-1} = 1$ or $(x_1, x_2, \cdots, x_{m-1})$ is an (m-1)-adic identity. Hence $gM^{m-1}g^{-1} \subseteq M^iM^{m-1}M^{m-i-1}$ $= M^{m-1}$. On the other hand, if $g \in G$ and $g \in M^{m-1}$ so that $g^{-1} \in M^{m-1}$, then $gM^{m-1}g^{-1} \subseteq M^{m-1}M^{m-1}M^{m-1} = M^{m-1}$. Thus, M^{m-1} is a normal subgroup of G. Now, if $x_1x_2 \cdots x_{m-2}x = 1$ or $(x_1, x_2, \cdots, x_{m-2}, x)$ is an (m-1)-adic identity, then $M = Mx_1x_2 \cdots x_{m-2}x \subseteq M^{m-1}x \subseteq M^m = M$. Whence $M^{m-1}x = M$. The rest of the conclusions follow.

No. 9]