193. On Free Abelian m-Groups. I

By F. M. Sioson
University of Ateneo de Manila, Manila
(Comm. by Kinjirô Kunugi, m.J.a., Nov. 13, 1967)

In this article, the notions of free abelian m-group and the tensor product of abelian m-groups will be introduced and their more immediate properties are developed.

Recall that
Definition. An algebraic system (M, []) or simply M is called an m-semigroup if and only if [$\quad]: M^{m} \rightarrow M$ satisfies the m-associative law, i.e.
$\left[\left[x_{1} x_{2} \cdots x_{m}\right] x_{m+1} \cdots x_{2 m-1}\right]=\left[x_{1} x_{2} \cdots x_{i}\left[x_{i+1} x_{i+2} \cdots x_{i+m}\right] x_{i+m+1} \cdots x_{2 m-1}\right]$
for each $i=1,2, \cdots, m-1$ and all $x_{1}, x_{2}, \cdots, x_{2 m-1} \in M$.
The m-ary operation [] can be extended in a natural way to an n-ary operation, where n is greater than m and such that $n \equiv 1$ (mod $m-1$). This is done by defining

$$
\left[x_{1} x_{2} \cdots x_{n}\right]=\left[\cdots\left[\left[x_{1} x_{2} \cdots x_{m}\right] x_{m+1} \cdots x_{2 m-1}\right] \cdots x_{n}\right]
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in M$ and $n \equiv 1(\bmod m-1)$. The following generalized associative law holds for m-semigroups (see R. H. Bruck [2]):

$$
\left[x_{1} x_{2} \cdots x_{m}\right]=\left[x_{1} x_{2} \cdots x_{i}\left[x_{i+1} x_{i+2} \cdots x_{j}\right] x_{j+1} \cdots x_{n}\right]
$$

for $n \equiv 1(\bmod m-1), 1<j-i \equiv 1(\bmod m-1)$, and all $x_{1}, x_{2}, \cdots, x_{n} \in M$.
For convenience, one may designate $\langle k\rangle=k(m-1)+1$ and $x^{\langle k\rangle}=\left[x_{1} x_{2} \cdots x_{\langle k\rangle}\right]$ with $x_{1}=x_{2}=\cdots=x_{\langle k\rangle}=x$. Observe that the following exponential laws hold in any m-semigroup: (1) $\left(x^{\langle h\rangle}\right)^{\langle k\rangle}=x^{\langle h k(m-1)+h+k\rangle}$ and (2) $\left[x^{\left\langle k_{1}\right\rangle} x^{\left\langle k_{2}\right\rangle} \cdots x^{\left\langle k_{m}\right\rangle}\right]=x^{\left\langle k_{1}+k_{2}+\cdots+k_{m}+1\right\rangle}$.

Definition. An $(m-1)$-tuple ($u_{1}, u_{2}, \cdots, u_{m-1}$) of elements from an m-semigroup (M, []) is called an ($m-1$)-adic identity of M if and only if $\left[x u_{1} u_{2} \cdots u_{m-1}\right]=x=\left[u_{1} u_{2} \cdots u_{m-1} x\right]$ for all $x \in M$. In a similar manner, for any $n \equiv 1(\bmod m-1)$, the notion of a $(n-1)$-adic identity of M may be defined.

Note that $\left(u_{1}, u_{2}, \cdots, u_{k(m-1)}\right)$ is a $k(m-1)$-adic identity if and only if ($\left.\left[u_{1} u_{2} \cdots u_{(k-1)(m-1)} u_{(k-1)(m-1)+1}\right], \cdots, u_{k(m-1)}\right)$ is an ($m-1$)-adic identity.

Definition. An m-semigroup (M, []) is an m-group if and only if
(a) for $u_{1}, u_{2}, \cdots u_{m-2} \in M$, there exists a $u \in M$ such that ($u_{1}, u_{2}, \cdots, u_{m-2}, u$) is an ($m-1$)-adic identity of M;
(b) for $u_{1}, u_{2}, \cdots u_{m \rightarrow 2} \in M$, there exists a $u \in M$ such that ($u, u_{1}, \cdots, u_{m-2}$) is an ($m-1$)-adic identity of M.

Observe that if $\left[u_{1} u_{2} \cdots u_{m-1} a_{1}\right]=a_{1}$ for a fixed $a_{1} \in M$, so that for any $a_{2}, \cdots, a_{m-2} \in M$ there exists an $a_{m-1} \in M$ such that $\left(a_{1}, a_{2}, \cdots, a_{m-1}\right)$ is an ($m-1$)-adic identity, then $\left[u_{1} u_{2} \cdots u_{m-1} x\right]$ $=\left[u_{1} u_{2} \cdots u_{m-1}\left[a_{1} a_{2} \cdots a_{m-1} x\right]\right]=\left[\left[u_{1} u_{2} \cdots u_{m-1} a_{1}\right] a_{2} \cdots a_{m-1} x\right]=\left[a_{1} a_{2}\right.$ $\left.\cdots a_{m-1} x\right]=x$ for all $x \in M$. From this it follows that if $\left(u_{1}, u_{2}, \cdots\right.$, $\left.u_{m-2}, u\right)$ is an ($m-1$)-adic identity, so that, in particular, [$u u_{1} \cdots$ $\left.u_{m-2} u\right]=u$, then $\left[u u_{1} \cdots u_{m-2} x\right]=x$ for all $x \in M$. Hence, if $\left(u_{1}, u_{2}\right.$, \cdots, u_{m-2}, v) is another ($m-1$)-identity, then $u=\left[u u_{1} \cdots u_{m-2} v\right]=v$. In exactly the same manner, this time using (b) in the definition, if ($u^{\prime}, u_{1}, \cdots, u_{m-2}$) and ($v^{\prime}, u_{1}, \cdots, u_{m-2}$) are both ($m-1$)-adic identities then $u^{\prime}=v^{\prime}$. Suppose, now, that ($u_{1}, \cdots, u_{m-2}, u$) and ($u^{\prime}, u_{1}, \cdots, u_{m-2}$) are both ($m-1$)-adic identities. As we have previously shown, the first of these implies that $\left[u u_{1} \cdots u_{m-2} x\right]=x$ for all $x \in M$, while the second implies $\left[x u_{1} \cdots u_{m-2} u^{\prime}\right]=x$ for all $x \in M$. Choosing $x=u^{\prime}$ in the first and $x=u$ in the second, we obtain $u=\left[u u_{1} \cdots u_{m-2} u^{\prime}\right]=u^{\prime}$. Finally, we have thus shown that for $u_{1}, \cdots, u_{m-2} \in M$, there exists uniquely a $u=\left(u_{1}, \cdots, u_{m-2}\right)^{-1} \in M$ such that both ($u_{1}, \cdots, u_{m-2}, u$) and $\left(u, u_{1}, \cdots, u_{m-2}\right)$ are ($m-1$)-adic identities. This also proves that our definition of an m-group is equivalent to that of D. Boccioni [1].

Incidentally, the above results also show that an m-group may be defined as an algebraic system ($\left.M,[\quad],()^{-1}\right)$ such that ($M,[\quad]$) is an m-semigroup and ()$^{-1}: M^{m-2} \rightarrow M$ is an ($m-1$)-ary operation such that $\left[x_{1} x_{2} \cdots x_{m-2}\left(x_{1}, x_{2}, \cdots, x_{m-2}\right)^{-1} x\right]=\left[\left(x_{1}, x_{2}, \cdots, x_{m-2}\right)^{-1} x_{1} x_{2} \cdots\right.$ $\left.x_{m-2} x\right]=\left[x x_{1} \cdots x_{m-2}\left(x_{1}, x_{2}, \cdots, x_{m-2}\right)^{-1}\right]=\left[x\left(x_{1}, x_{2}, \cdots, x_{m-2}\right)^{-1} x_{1} \cdots x_{m-2}\right]$ $=x$ for all $x, x_{1}, x_{2}, \cdots, x_{m-2} \in M$. Whence

Theorem 1. The family of all m-groups is an equational or primitive class.

One further concludes from the above discussions that if (u_{1}, \cdots, u_{m-2}, u_{m-1}) is an ($m-1$)-adic identity, then ($u_{m-1}, u_{1}, \cdots, u_{m-2}$) is also an $(m-1)$-adic identity. By iteration, we obtain the result that ($\left.u_{\sigma(1)}, \cdots, u_{\sigma(m-2)}, u_{\sigma(m-1)}\right)$ is an ($m-1$)-adic identity for all powers σ of the permutation ($12 \cdots m-1$).

As an example of an m-group, consider the following. Let X_{1}, X_{2}, \cdots, X_{m-1} be sets of the same cardinality. Denote by $S\left(X_{1}, X_{2}\right.$, \cdots, X_{m-1}) the collection of all one-to-one functions f on $\bigcup_{i=1}^{m-1} X_{i}$ onto itself such that $f\left(X_{i}\right)=X_{o(i)}$ for all $i=1, \cdots, m-1$, where σ is the cyclic permutation ($12 \cdots m-1$). Under the operation defined by

$$
\left[f_{1} f_{2} \cdots f_{m}\right]=f_{1} \circ f_{2} \circ \cdots \circ f_{m}
$$

$S\left(X_{1}, X_{2}, \cdots, X_{m-1}\right)$ is clearly an m-semigroup. If $f_{1}, f_{2}, \cdots, f_{m-2}$ $\in S\left(X_{1}, X_{2}, \cdots, X_{m-1}\right)$, then $f_{1} \circ f_{2} \circ \cdots \circ f_{m-2}=f$ is a one-to-one function such that $f\left(S_{1}\right)=S_{m-1}, f\left(S_{2}\right)=S_{1}, \cdots, f\left(S_{m-1}\right)=S_{m-2}$ and hence
$f^{-1} \in S\left(X_{1}, X_{2}, \cdots, X_{m-2}\right)$. Both $\left(f^{-1}, f_{1}, \cdots, f_{m-2}\right)$ and $\left(f_{1}, \cdots, f_{m-2}\right.$, f^{-1}) are m-adic identities of $S\left(X_{1}, X_{2}, \cdots, X_{m-1}\right)$.

For self-containment, we shall state and prove the following two results which will be used later.

Theorem 2. Every m-group ($M,[\quad]$) is isomorphic to an m group of functions.

Proof. For each $i=1, \cdots, m-1$, defined a relation $\stackrel{i}{\sim}$ on the cartesian product $M \times M \times \cdots \times M$ (i-times) such that ($a_{1}, a_{2}, \cdots, a_{i}$) $\stackrel{i}{\sim}\left(b_{1}, b_{2}, \cdots, b_{i}\right)$ if and only if $\left[a_{1} a_{2} \cdots a_{i} x_{i+1} \cdots x_{m}\right]=\left[b_{1} b_{2} \cdots\right.$ $b_{i} x_{i+1} \cdots x_{m}$] for all $x_{i+1}, x_{i+2}, \cdots, x_{m} \in M$. Observe that if $\left[a_{1} a_{2} \cdots\right.$ $\left.a_{i} c_{i+1} \cdots c_{m}\right]=\left[b_{1} b_{2} \cdots b_{i} c_{i+1} \cdots c_{m}\right]$ for some fixed $c_{i+1}, \cdots, c_{m} \in M$, so that $\left(c_{2}, c_{3}, \cdots, c_{m}\right)$ is an $(m-1)$-adic identity, then
$\left[a_{1} a_{2} \cdots a_{i} x_{i+1} \cdots x_{m}\right]=\left[a_{1} a_{2} \cdots a_{i}\left[c_{i+1} \cdots c_{m} c_{2} \cdots c_{i} x_{i+1}\right] \cdots x_{m}\right]$
$=\left[\left[a_{1} a_{2} \cdots a_{i} c_{i+1} \cdots c_{m}\right] c_{2} \cdots c_{i} x_{i+1} \cdots x_{m}\right]$
$=\left[\left[b_{1} b_{2} \cdots b_{i} c_{i+1} \cdots c_{m}\right] c_{2} \cdots c_{i} x_{i+1} \cdots x_{m}\right]$
$=\left[b_{1} b_{2} \cdots b_{i}\left[c_{i+1} \cdots c_{m} c_{2} \cdots c_{i} x_{i+1}\right] x_{i+2} \cdots x_{m}\right]$ $=\left[b_{1} b_{2} \cdots b_{i} x_{i+1} \cdots x_{m}\right]$
for all $x_{i+1}, \cdots, x_{m} \in M$.
It is easy to see that $\stackrel{i}{\sim}$ for each $i=1,2, \cdots, m-1$ is an equivalence relation on $M \times M \times \ldots \times M$ (i times $)$. Set $X_{i}=M \times M \times \cdots$ $\times M / \stackrel{i}{\sim}$. Note that $M / \stackrel{1}{\sim}=X_{1}=M$ since (a) $\stackrel{1}{\sim}(\mathrm{~b})$ if and only if $a=b$. Now, consider the transformation m-group $S\left(X_{1}, X_{2}, \cdots, X_{m-1}\right)$. For each $x \in M$, define f_{x} by $f_{x}\left(\left(x_{1}, \cdots, x_{i}\right) / \stackrel{i}{\sim}\right)=\left(x_{1}, \cdots, x_{i}, x\right) / \stackrel{i+1}{\sim}$ for $i=1,2, \cdots, m-2$ and $f_{x}\left(\left(x_{1}, \cdots, x_{m-1}\right) / \stackrel{m-1}{\sim}\right)=\left[x_{1} x_{2} \cdots x_{m-1} x\right] / \stackrel{1}{\sim}$ for $i=m-1$. Suppose $f_{x}\left(\left(x_{1}, \cdots x_{i}\right) / \stackrel{i}{\sim}\right)=f_{x}\left(\left(y_{1}, \cdots, y_{i}\right) / \stackrel{i}{\sim}\right)$ so that $\left(x_{1}, \cdots, x_{i}, x\right) \stackrel{i+1}{\sim}\left(y_{1}, \cdots, y_{i}, x\right)$. This means that for all x_{i+2}, $\cdots, x_{m} \in M$ we have $\left[x_{1} \cdots x_{i} x x_{i+2} \cdots x_{m}\right]=\left[y_{1} \cdots y_{i} x x_{i+2} \cdots x_{m}\right]$ and hence $\left(x_{1}, \cdots, x_{i}\right) \stackrel{i}{\sim}\left(y_{1}, \cdots, y_{1}\right)$ or $\left(x_{1}, \cdots, x_{i}\right) / \stackrel{i}{\sim}=\left(y_{1}, \cdots, y_{i}\right) / \stackrel{i}{\sim}$. Thus, f_{x} is one-to-one. To show that f_{x} is onto, consider any $\left(a_{1}, \cdots, a_{i+1}\right) / \stackrel{i+1}{\sim}$. Choose $a_{i+2}, \cdots, a_{m-1} \in M$ such that (a_{1}, \cdots, a_{m-1}) is an ($m-1$)-adic identity and choose $b_{1}, \cdots, b_{i} \in M$ such that (x, a_{i+2}, $\cdots, a_{m-1}, b_{1}, \cdots, b_{i}$) and hence ($b_{1}, \cdots, b_{i}, x, a_{i+2}, \cdots, a_{m-1}$) is an (m-1)adic identity. Then $f_{x}\left(\left(b_{1}, \cdots, b_{i}\right) / \stackrel{i}{\sim}\right)=\left(b_{1}, \cdots, b_{i}, x\right) / \stackrel{i+1}{\sim}=\left(a_{1}, \cdots\right.$, $\left.\alpha_{i+1}\right) / \stackrel{i+1}{\sim}$. A variation of this argument will show that in general f_{x} is onto.

Define $h: M \rightarrow S\left(X_{1}, X_{2}, \cdots, X_{m-1}\right)$ by $h(x)=f_{x}$. If $f_{x}=f_{y}$ and $\left(u_{1}, \cdots, u_{m-1}\right)$ is any $(m-1)$-adic identity, then $x=\left[u_{1} \cdots u_{m-1} x\right]$ $=\left[u_{1} \cdots u_{m-1} y\right]=y$, that is, h is one-to-one. Moreover, $h\left(\left[x_{1} x_{2} \cdots x_{m}\right]\right)$ $=f_{\left[x_{1} x_{2} \cdots x_{m}\right]}=f_{x_{1}} \circ f_{x_{2}} \circ \cdots \circ f_{x_{m}}=\left[f_{x_{1}} f_{x_{2}} \cdots f_{x_{m}}\right]=\left[h\left(x_{1}\right) h\left(x_{2}\right) \cdots h\left(x_{m}\right)\right]$ for all $x_{1}, x_{2}, \cdots, x_{m} \in M$.

Theorem 3 (Post Coset Theorem). Every m-group M is a coset $N x=x N=M$ of a (2-group) group G by a normal subgroup $N=M^{m-1}$ whose index is a divisor of $m-1$. Moreover, G / N is a cyclic group generated by M and $G=M \cup M^{2} \cup \cdots \cup M^{m-1}$.

Proof. By Theorem 2, M is isomorphic to and hence may be identified with a subset of the symmetric group $S\left(\bigcup_{i=1}^{m-1} X_{i}\right)$ of all one-to-one transformations of the set $\bigcup_{i=1}^{m-1} X_{i}$ onto itself. ${ }^{i=1}$ The operation in M is an extension of the operation of composition in this group. Let G be the least subgroup of $S\left(\bigcup_{i=1}^{m-1} X_{i}\right)$ containing M. Since $M^{m}=M$, then note that $G=M \cup M^{2} \cup \cdots \cup M^{m-1}$. If $g \in G$ such that $g=x_{1} x_{2}$ $\cdots x_{i}$ for $x_{1}, \cdots, x_{i} \in M$ and $i \leqq m-2$, then $g^{-1}=x_{i+1} \cdots x_{m-1}$ for x_{i+1}, $\cdots, x_{m-1} \in M$ with the property that $x_{1} x_{2} \cdots x_{m-1}=1$ or (x_{1}, x_{2}, \cdots, x_{m-1}) is an ($m-1$)-adic identity. Hence $g M^{m-1} g^{-1} \subseteq M^{i} M^{m-1} M^{m-i-1}$ $=M^{m-1}$. On the other hand, if $g \in G$ and $g \in M^{m-1}$ so that $g^{-1} \in M^{m-1}$, then $g M^{m-1} g^{-1} \subseteq M^{m-1} M^{m-1} M^{m-1}=M^{m-1}$. Thus, M^{m-1} is a normal subgroup of G. Now, if $x_{1} x_{2} \cdots x_{m-2} x=1$ or ($x_{1}, x_{2}, \cdots, x_{m-2}, x$) is an ($m-1$)-adic identity, then $M=M x_{1} x_{2} \cdots x_{m-2} x \subseteq M^{m-1} x \subseteq M^{m}=M$. Whence $M^{m-1} x=M$. The rest of the conclusions follow.

