188. Representation Ring of Lie Group F_{4}

By Ichiro Yокота
Department of Mathematics, Shinshu University, Matsumoto, Japan (Comm. by Kinjirô Kunugi, m.J.a., Nov. 13, 1967)

1. Introduction. The aim of this paper is to determine the representation ring $R\left(F_{4}\right)$ of group F_{4}, which is a simply connected compact simple Lie group of exceptional type F. Let \mathfrak{J} denote the Jordan algebra consisting of all 3 -hermitian matrices over the division ring of Cayley numbers. The group F_{4} is obtained as the automorphism group of \mathfrak{F}. Let \Im_{0} be the set of all elements of \Im with zero trace. Then \Im_{0} is invariant by the operation of F_{4}. Thus we have an F_{4} - C-module $\Im_{0} \otimes_{R} C .{ }^{1)}$ On the other hand, we know another F_{4} - C-module $F_{4} \otimes_{R} C$, where F_{4} is the Lie algebra of F_{4}. The result is as follows: $R\left(F_{4}\right)$ is a polynomial ring $Z\left[\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu\right]$ with 4 variables $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ, where λ_{i} is the class of the exterior $F_{4}-C$-module $\Lambda^{i}\left(\Im_{0} \otimes_{R} C\right)$ in $R\left(F_{4}\right)$ for $i=1,2,3$, and μ is the class of $\mathfrak{F}_{4} \otimes_{R} C$ in $R\left(F_{4}\right)$. In this paper, we shall describe the outline of our methods; these may be analogous to those as in the cases of classical groups [1] and of group G_{2} [2]. The details will appear in the Journal of the Faculty of Science, Shinshu University, vol. 3, 1968.
2. Representation ring. Let G be a topological group. Let $M(G)$ denote the set of all G - C-isomorphism classes of G-C-modules. The direct sum $V \oplus W$ and the tensor product $V \otimes W$ of two $G-C$ modules V, W define a semiring structure on $M(G)$. The representation ring $R(G)=(R(G), \phi)$ (where $\phi: \quad M(G) \rightarrow R(G)$ is a semiring homomorphism) is the universal ring associated with the semiring $M(G)$.
3. Jordan algebra \mathfrak{F}, group F_{4} and Lie algebra $\mathfrak{F}_{4} \otimes_{R} C$.

Let \mathbb{C}^{5} denote the division ring of Cayley numbers and \mathfrak{F} be the set of all 3-hermitian matrices X over \mathfrak{b}. In \mathfrak{F}, we define a Jordan multiplication by

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

Then \mathfrak{F} is a 27 -dimensional commutative distributive (non-associative) algebra over R. Let F_{4} denote the group of all automorphisms of \mathfrak{F}. As is well known, F_{4} is a simply connected compact simple Lie group of exceptional type F. Obviously, \mathfrak{F} is an $F_{4}-R$-module.

[^0]Let \Im_{0} be the set of all elements of \mathfrak{J} with zero trace. \Im_{0} is a 26-dimensional R-submodule of \mathfrak{F}. Since each $x \in F_{4}$ invaries the trace of every $X \in \mathfrak{J}, \Im_{0}$ is also an $F_{4}-R$-module and \mathfrak{F} is decomposable into the direct sum of R (with trivial group action) and $\mathfrak{J}_{0}: \mathfrak{J}=R \oplus \Im_{0}$. Thus we have an F_{4} - C-module $\Im_{0} \otimes_{R} C$.

Let \mathfrak{F}_{4} denote the Lie algebra of F_{4}, which consists of all R-homomorphism $A: \mathfrak{F} \rightarrow \mathfrak{I}$ satisfying

$$
A(X \circ Y)=A(X) \circ Y+X \circ A(Y) \quad \text { for } X, Y \in \Im
$$

\mathfrak{F}_{4} is a 52 -dimensional $F_{4}-R$-module by the group operation

$$
(x A)(X)=x\left(A\left(x^{-1}(X)\right) \quad \text { for } x \in F_{4}, A \in \mathfrak{F}_{4}, X \in \mathfrak{I}\right.
$$

Thus we have an F_{4} - C-module $\mathfrak{F}_{4} \otimes_{R} C$.
4. Maximal torus T and Weyl group W of F_{4}.
F_{4} has three subgroups of type $\operatorname{Spin}(9): \operatorname{Spin}^{(1)}(9), \operatorname{Spin}^{(2)}(9)$, $\operatorname{Spin}^{(3)}(9)$, and has a subgroup $\operatorname{Spin}(8)$. That is,

$$
\operatorname{Spin}^{(i)}(9)=\left\{x \in F_{4} \mid x\left(E_{i}\right)=E_{i}\right\} \quad \text { for } i=1,2,3, \text { where }
$$

$$
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \text { and } E_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

And $\operatorname{Spin}(8)=\operatorname{Spin}^{(1)}(9) \cap \operatorname{Spin}^{(2)}(9) \cap \operatorname{Spin}^{(3)}(9)$. Since the ranks of F_{4} and $\operatorname{Spin}(8)$ are both 4 , we choose a maximal torus T of F_{4} in Spin (8).

The Weyl group $W=W\left(F_{4}\right)$ of F_{4} is $N_{T}\left(F_{4}\right) / T$, where $N_{T}\left(F_{4}\right)$ is the normalizer of T in F_{4}. Each element $x \in N_{T}\left(F_{4}\right)$ induces a permutation of E_{1}, E_{2}, E_{3}. It follows that $W\left(F_{4}\right)$ is a semidirect product of $W(\operatorname{Spin}(8))$ (the Weyl group of $\operatorname{Spin}(8))$ and \mathbb{S}_{3} (the symmetric group of 3 factors).
5. Decompositions of $\Im_{0} \otimes_{R} C$ and $\mathfrak{F}_{4} \otimes_{R} C$.

Let $j: T \rightarrow F_{4}$ denote the inclusion. Then j induces the inclusion $R\left(F_{4}\right) \subset R(T)^{W}$, where $R(T)^{W}$ is the subring of $R(T)$ which is invariant by the Weyl group W.

The representation ring $R(T)$ of T is

$$
R(T)=\left[\alpha_{1}, \alpha_{1}^{-1}, \alpha_{2}, \alpha_{2}^{-1}, \alpha_{3}, \alpha_{3}^{-1}, \alpha_{4}, \alpha_{4}^{-1}, \alpha_{1}^{1 / 2} \alpha_{2}^{1 / 2} \alpha_{3}^{1 / 2} \alpha_{4}^{1 / 2}\right]
$$

and we have $R(\operatorname{Spin}(8))=Z\left[\sigma, \tau, \Delta^{-}, \Delta^{+}\right]$(cf. [1]), where

$$
\begin{aligned}
& \sigma=\sum_{i=1}^{4}\left(\alpha_{i}+\alpha_{i}^{-1}\right), \\
& \tau=\sum_{1 \leqq i<j}\left(\alpha_{i}+\alpha_{i}^{-1}\right)\left(\alpha_{j}+\alpha_{j}^{-1}\right), \\
& \Delta^{-}=\sum_{\varepsilon_{1} \sum_{\varepsilon_{2}}^{\varepsilon_{3} \varepsilon_{4}=--1}} \alpha_{1}^{\varepsilon_{1} / 2} \alpha_{2}^{\varepsilon_{2} / 2} \alpha_{3}^{\varepsilon_{3 / 2}} \alpha_{4}^{\varepsilon_{4} / 2} \\
& \Delta^{+}=\sum_{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3_{4}}^{\varepsilon_{4}=1}}^{\varepsilon_{1}^{1 / 2}} \alpha_{2}^{\varepsilon_{2} / 2} \alpha_{3}^{\varepsilon_{3} / 2} \alpha_{4}^{\varepsilon_{4} / 2}
\end{aligned}
$$

$\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right.$ are -1 or 1$)$.
The main tools in the determination of $R\left(F_{4}\right)$ are the following decompositions of $\mathfrak{J} \otimes_{R} C$ and $\mathfrak{F}_{4} \otimes_{R} C$ in $R(T)$.

$$
\begin{align*}
& \lambda_{1}=\phi\left(\Im_{0} \otimes_{R} C\right)=2+\sigma+\Delta^{-}+\Delta^{+} \tag{5.1}\\
& \mu=\phi\left(\mathfrak{F}_{4} \otimes_{R} C\right)=4+\sigma+\Delta^{-}+\Delta^{+}+\tau .
\end{align*}
$$

Further by (5.1) we have

$$
\begin{align*}
& \lambda_{2}=\phi\left(\Lambda^{2}\left(\Im_{0} \otimes_{R} C\right)\right)=13+2\left(\sigma+\Delta^{-}+\Delta^{+}\right)+\left(\sigma \Delta^{-}+\Delta^{-} \Delta^{+}+\Delta^{+} \sigma\right)+3 \tau, \tag{5.3}\\
& \lambda_{3}= \phi\left(\Lambda^{3}\left(\Im_{0} \otimes_{R} C\right)\right)=24+8\left(\sigma+\Delta^{-}+\Delta^{+}\right)+2 \tau\left(\sigma+\Delta^{-}+\Delta^{+}\right) \tag{5.4}\\
&+3\left(\sigma \Delta^{-}+\Delta^{-} \Delta^{+}+\Delta^{+} \sigma\right)+\sigma \Delta^{-} \Delta^{+}+6 \tau .
\end{align*}
$$

6. Ring structure of $R(T)^{W}$.

From (5.1)-(5.4) we have

$$
\left\{\begin{array}{l}
\sigma+\Delta^{-}+\Delta^{+}=\lambda_{1}-2 \tag{6.1}\\
\sigma \Delta^{-}+\Delta^{-} \Delta^{+}+\Delta^{+} \sigma=\lambda_{2}+\lambda_{1}-3 \mu-3 \\
\sigma \Delta^{-} \Delta^{+}=\lambda_{3}-3 \lambda_{2}-5 \lambda_{1}+7 \mu+2 \lambda_{1}^{2}-2 \lambda_{1} \mu+5 \\
\tau=\mu-\lambda_{1}-2 .
\end{array}\right.
$$

Note that the left side formulae in (6.1) are polynomials in $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ.

Now, let f be a W-invariant polynomial. We know that any W (Spin (8))-invariant polynomial is representable as a polynomial in $\sigma, \tau, \Delta^{-}, \Delta^{+}$, and Weyl group W is the semidirect product of W (Spin (8)) and \mathfrak{S}_{3} (which is the permutation group of 3 factors $\left.\sigma, \Delta^{-}, \Delta^{+}\right)$. Hence, f is a polynomial in $\sigma+\Delta^{-}+\Delta^{+}, \sigma \Delta^{-}+\Delta^{-} \Delta^{+}+\Delta^{+} \sigma$, $\sigma \Delta^{-} \Delta^{+}$, and τ. Thus, by (6.1) f is representable as a polynomial in $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ.

Next, we shall show that $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ are algebraically independent. In fact, $\sigma, \Delta^{-}, \Delta^{+}$, and τ are algebraically independent, hence so are also $\sigma+\Delta^{-}+\Delta^{+}, \sigma \Delta^{-}+\Delta^{-} \Delta^{+}+\Delta^{+} \sigma, \sigma \Delta^{-} \Delta^{+}$, and τ, and, therefore, by (5.1)-(5.4) $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ are algebraically independent. Thus we have proved the following

Theorem. The representation ring $R\left(F_{4}\right)$ of F_{4} is a polynomial ring $\left[\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu\right]$ with 4 variables $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and μ.

References

[1] J. Milnor: The representation rings of some classical groups. Notes for Mathematics, 402 (1963).
[2] I. Yokota: Representation ring of group G_{2}. Jour. Fac. Sci., Shinshu Univ., 2 (1967).

[^0]: 1) R and C are the fields of real and complex numbers, respectively.
