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1. Introduction. The aim of this paper is to determine the
representation ring R(F) of group F,, which is a simply connected
compact simple Lie group of exceptional type F. Let denote
the Jordan algebra consisting of all 3-hermitian matrices over the
division ring of Cayley numbers. The group F is obtained as the
automorphism group of . Let 0 be the set of all elements of

with zero trace. Then 0 is invariant by the operation of F,.
Thus we have an F,-C-module 0(R)C.) On the other hand, we
know another F-C-module F,(R)C, where F is the Lie algebra of F,.
The result is as follows: R(F) is a polynomial ring Z, 2., , [
with 4 variables 21, 22, 23, and [, where 2 is the class of the exterior
F,-C-module 4(o(R)RC) in R(F) for i= 1, 2, 3, and [ is the class of
(R)C in R(F,). In this paper, we shall describe the outline of
our methods; these may be analogous to those as in the cases of
classical groups [1 and of group G. [2. The details will appear in
the Journal of the Faculty of Science, Shinshu University, vol. 3,
1968.

2. Representation ring. Let G be a topological group. Let
M(G) denote the set of all G-C-isomorphism classes of G-C-modules.
The direct sum V@ W and the tensor product V(R) W of two G-C-
modules V, W define a semiring structure on M(G). The represen-
tation ring R(G)=(R(G), ) (where : M(G)---R(G) is a semiring
homomorphism) is the universal ring associated with the semiring
M(a).

3. Jordan algebra , group F and Lie algebra (R)C.
Let denote the division ring of Cayley numbers and be the

set of all 3-hermitian matrices X over . In , we define a Jordan
multiplication by

Xo Y:(XY+ YX).

Then is a 27-dimensional commutative distributive (non-asso-
ciative) algebra over R. Let F, denote the group of all automorphisms
of . As is well known, F, is a simply connected compact simple
Lie group of exceptional type F. Obviously, is an F,-R-module.

1) R and C are the fields of real and complex numbers, respectively.
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Let 0 be the set of all elements of with zero trace. 0 is a
26-dimensional R-submodule of . Since each x e F, invaries the
trace of every X e , 0 is also an F,-R-module and is decomposable
into the direct sum of R (with trivial group action) and 0: =R0.
Thus we have an F-C-module 0@C.

Let , denote the Lie algebra of F,, which consists of all
R-homomorphism A: satisfying

A(X y) A(X) y+X A(Y) for X, Y e ., is a 52-dimensional F,-R-module by the group oeration
(xA)(X) x(A(x-(X)) for x e F, A e ,, X e .

Thus we have an F,-C-module @C.
4. Maximal torus T and Wey1 group W of F.
F, has three subgroups of type Spin(9): Spin()(9), Spin()(9),

Spin()(9), and has a subgroup Spin (8). That is,
Spin()(9) {x e F]x(E)=E} for i= 1, 2, 3, where

O, O.0, E 0E 0 E 1 and
0 0 0 0 0

And Spin(8)=Spin()(9) Spin(:)(9) Spin(a)(9). Since the ranks of
F, and Spin (8) are both 4, we choose a maximal torus T of F in
Spin (8).

The Weyl group W-W(F) of F is Nr(F)/T, where Nr(F,) is
the normalizer of T in F. Each element x+Nr(F,) induces a
permutation of E, E:, E. It follows that W(F,) is a semidirect
product of W(Spin(8)) (the Weyl group of Spin(8)) and (the
symmetric group of 3 factors).

5. Decompositions of 0C and RC.
Let j: TF denote the inclusion. Then j induces the inclusion

R(F)R(T), where R(T) is the subring of R(T) which is invariant
by the Weyl group W.

The representation ring R(T) of T is
R(T)= Ea, a?, a, a, a, a, a, a, aaaa]

and we have R(Spin (8))= ZEG, v, 2-, Z+] (cf. Eli), where

-- 11/22/23]24/22 3 4
ele2e3e4=--i

ele2e3e4:1

(, , e, are -1 or 1).
The main tools in the determination of R(F,) are the following

decompositions of @C and ,@C in R(T).
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(5.1) 11 (0(R)RC) 2+
(5.2) / (@,(R) RC) 4+
Further by (5.1) we have
(5.3) 25 0(A2(0(R)C)) 13+ 2(a+ 2-+ +)+ (az/- + h-Z+ + d+a) + 3v,
(5.4) 23 0(A3(0(R)C)) 24 + 8(a+ 2-+ +)+ 2v(a+ z/- + +)

+ 3(az/- +-+++a)+
6. Ring structure of R(T)W.
From (5.1)(5.4) we have

Ja-+ /-+++a 2+2-3/- 3
(6.1)

|az-z/+ 23- 322- 521 +7+2-221/ + 5
"

Note that the ]eft side ormu]ae in (6.1) are polynomials in 21, 22, 2,
and

Now, let f be a W-invariant polynomial. We know that any
W(Spin(8))-invariant polynomial is representable as a po]ynomial
in 6, , -, +, and Weyl group W is the semidirect product o
W(Spin (8))and (R)3 (which is the permutation group of 3 factors
a, d-, d+). Hence, f is a polynomial in a
az-z/+, and v. Thus, by (6.1) f is representable as a polynomial in
2, 2, , and /.

Next, we shall show that ,.,, and / are algebraically
independent. In fact, a, 2-, 2+, and v are algebraically independent,
hence so are also a+ 2-/ 2+, a2- + z-z/+ + +a, a2-z/+, and v, and,
therefore, by (5.1)(5.4) 2, 2., 2, and/ are algebraically independent.
Thus we have proved the following

Theorem. The representation ring R(F,) of F, is a polynomial
ring [2, ., , [ with 4 variables , , , and
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