182. On the Spherical Derivative of Functions Regular or Meromorphic in the Unit Disc

By Yoshihiro Ichimara
Mathematical Institute, Tokyo Metropolitan University, Tokyo

(Comm. by Zyoiti Suetuna, m.J.a., Nov. 13, 1967)

1. Introduction. O. Lehto and K. Virtanen [3] used the spherical derivative

$$
\begin{equation*}
\rho(f(z))=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} \tag{1.1}
\end{equation*}
$$

as a measure of the growth of $f(z)$ near an isolated singularity, and they $[1,2]$ developed the study of this direction. In particular, as regards the growth of the spherical derivative Lehto proved:

Theorem A. Let $f(z)$ be meromorphic in a neighbourhood of the essential singularity $z=a$. Then

$$
\begin{equation*}
\varlimsup_{z \rightarrow a}|z-a| \rho(f(z)) \geqq \frac{1}{2} \tag{1.2}
\end{equation*}
$$

Equality holds for the product

$$
f(z)=\prod_{\nu} \frac{z-a-a_{\nu}}{z-a+a_{\nu}},
$$

where the numbers a_{ν} satisfy the condition $\left|a_{\nu+1}\right|=o\left(\left|a_{\nu}\right|\right)$.
Theorem B. If $f(z)$ satisfies the hypothesis of Theorem A and further $f(z)$ is regular near $z=a$, then

$$
\begin{equation*}
\varlimsup_{z \rightarrow a}|z-a| \rho(f(z))=\infty \tag{1.3}
\end{equation*}
$$

Further J. Clunie and W. K. Hayman obtained some extensions of Theorem A and B in their paper [4]. For instance, they proved the following result.

Theorem C. If $f(z)$ is an integral function of proper order $\lambda(0 \leqq \lambda \leqq \infty)$, then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{r \mu(r, f)}{\log M(r, f)} \geqq A_{0}(\lambda+1) \tag{1.4}
\end{equation*}
$$

where A_{0} is an absolute constant and $\mu(r, f)=\sup _{|z|=r} \rho(f(z))$.
2. Our object in this paper is to obtain some results concerning the growth of spherical derivative $\rho(f(z))$ for functions regular and meromorphic in the unit disc $|z|<1$. First we shall prove:

Theorem 1. Suppose that $f(z)$ is regular for $|z|<1$ and that its order λ satisfies $2<\lambda \leqq \infty$. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1}(1-r)^{\lambda-1} \mu(r, f) \geqq K \lambda\left(\frac{\lambda-2}{\lambda+2}\right)^{\lambda-1} \tag{2.1}
\end{equation*}
$$

holds, where $\mu(r, f)=\sup _{|z|=r} \rho(f(z))$ and K is a positive constant depending on $f(z)$ only.
3. Lemmas. We require two lemmas to prove Theorem 1.

Lemma 1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be regular in $\left|z-z_{0}\right| \leqq \delta$ and satisfy $|f(z)| \geqq 1$ there. Then

$$
\begin{equation*}
\left|a_{1}\right| \leqq \frac{2\left|a_{0}\right| \log \left|a_{0}\right|}{\delta} \tag{3.1}
\end{equation*}
$$

If further $\left|f\left(z_{1}\right)\right|=1$ for some z_{1} with $\left|z_{1}-z_{0}\right|=\delta$ then for some z on the segment joining z_{0} to z_{1}

$$
\begin{equation*}
\rho(f(z)) \geqq \frac{\log \left|a_{0}\right|}{10 \delta \log 2} \tag{3.2}
\end{equation*}
$$

This result was given by W. K. Hayman ([4], p. 125).
Lemma 2. Suppose that $\varphi(r)(0<r<1)$ is continuous, positive and strictly increasing with a piecewise continuous locally bounded derivative $\varphi^{\prime}(r)$. [At points of discontinuity we define $\varphi^{\prime}(r)$ as the limit from the left.] Suppose that for positive α, β

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1} \varphi(r)(1-r)^{\alpha}>\beta \tag{3.3}
\end{equation*}
$$

Then given $\alpha^{\prime}\left(0<\alpha^{\prime}<\alpha\right)$ there exist r arbitrarily near to 1 for which the following are satisfied;

$$
\begin{align*}
\frac{\varphi^{\prime}(r)}{\varphi(r)} & \geqq \frac{\alpha^{\prime}}{1-r} . \tag{3.4}\\
\varphi(r)(1-r)^{\alpha} & \geqq \beta . \tag{3.5}
\end{align*}
$$

This lemma is an analogue of Hayman's ([4], Lemma 3), so we omit the proof.
4. Proof of Theorem 1. We apply Lemma 2 with $\alpha=\lambda$ and $\alpha>\alpha^{\prime}>2$ to $\varphi(r)=\log M(r, f)$ so that for some r arbitrarily near to 1, (3.4) and (3.5) hold simultaneously. For such an r there exists a point $z_{0}=r e^{i \theta}$ such that

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right|=M(r, f), \quad\left|\frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|=\varphi^{\prime}(r) \tag{4.1}
\end{equation*}
$$

(see e.g., [5], p. 136). Now we consider a non-Euclidean disc with the center z_{0} and the radius $\delta(r)$

$$
\begin{equation*}
D\left(z_{0}, \delta(r)\right)=\left\{z: \sigma\left(z, z_{0}\right)<\delta(r)\right\} \subset\{|z|<1\}, \tag{4.2}
\end{equation*}
$$

where $\delta(r)$ is the radius of the largest disc $D\left(z_{0}, \delta(r)\right)$ in which $|f(z)|>1$, and $\sigma(a, b)$ is non-Euclidean hyperbolic distance between a and b. We can map conformally this disc $D\left(z_{0}, \delta(r)\right)$ onto a disc $|\zeta|<d(r)$ in ζ-plane by a transformation

$$
\begin{equation*}
\zeta=S(z)=\left(z-z_{0}\right) /\left(1-\bar{z}_{0} z\right) . \tag{4.3}
\end{equation*}
$$

Then obviously $d(r)=\operatorname{th} \delta(r)$, where th $x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$. Further we define $F(\zeta)$ by $f(z)=F(\zeta), \zeta=S(z)$. Then $F(\zeta)$ is regular in $|\zeta|<d(r)$ and $|F(\zeta)|>1$ in $|\zeta|<d(r)$. Hence, by Lemma 1

$$
\begin{equation*}
d(r) \leqq \frac{2|F(0)| \log |F(0)|}{\left|F^{\prime}(0)\right|}, \tag{4.4}
\end{equation*}
$$

and for some ζ in $|\zeta|<d(r)$

$$
\begin{equation*}
\rho(F(\zeta)) \geqq \frac{\log |F(0)|}{10 d(r) \log 2} . \tag{4.5}
\end{equation*}
$$

Returning to z-plane, we get from (4.4) and (4.5)

$$
\begin{gather*}
d(r) \leqq \frac{2\left|f\left(z_{0}\right)\right| \log \left|f\left(z_{0}\right)\right|}{\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)} \tag{4.4}\\
\frac{\left|1-\bar{z}_{0}\right|^{2}}{1-\left|z_{0}\right|^{2}} \rho(f(z)) \geqq \frac{\log \left|f\left(z_{0}\right)\right|}{10 d(r) \log 2} \quad \text { for some } z \text { in } D\left(z_{0}, \delta(z)\right) . \tag{4.5}
\end{gather*}
$$

On the other hand, we have by (4.1) and (4.4)'

$$
\begin{equation*}
\operatorname{th} \delta(r)=d(r) \leqq \frac{2 \varphi(r)}{\varphi^{\prime}(r)} \frac{1}{1-r^{2}} \tag{4.6}
\end{equation*}
$$

Hence, from (3.4)

$$
\begin{equation*}
\operatorname{th} \delta(r)=d(r) \leqq \frac{2}{\alpha^{\prime}}(1-r) \frac{1}{1-r^{2}} \leqq \frac{2}{\alpha^{\prime}}<1 \tag{4.7}
\end{equation*}
$$

Therefore, by (4.5)'

$$
\begin{equation*}
\rho(f(z)) \geqq \frac{\varphi(r) \alpha^{\prime}}{20 \log 2} \frac{1-r}{4} . \tag{4.8}
\end{equation*}
$$

Using (3.5), we obtain

$$
\begin{equation*}
\rho(f(z)) \geqq \frac{\alpha^{\prime} \beta}{80 \log 2}\left(\frac{1}{1-r}\right)^{\lambda-1} . \tag{4.9}
\end{equation*}
$$

Now setting $|z|=R$ for z satisfying (4.5)', we get

$$
\begin{equation*}
r-d_{2}(r)<R<r+d_{1}(r)<1 \tag{4.10}
\end{equation*}
$$

since $z \in D\left(z_{0}, \delta(r)\right)$, where

$$
d_{1}(r)=\frac{\left(1-\left|z_{0}\right|^{2}\right) \operatorname{th} \delta(r)}{1+\left|z_{0}\right| \operatorname{th} \delta(r)} \quad \text { and } \quad d_{2}(r)=\frac{\left(1-\left|z_{0}\right|^{2}\right) \operatorname{th} \delta(r)}{1-\left|z_{0}\right| \operatorname{th} \delta(r)} .
$$

Then we note by (4.7) that $d_{2}(r) \rightarrow 0$ as $r \rightarrow 1$. Hence by (4.10) we see that $R \rightarrow 1$ as $r \rightarrow 1$. Here we consider two cases: 1) $r \geqq R, 2$) $r<R$.
Case 1). In this case, we get from (4.9)

$$
\begin{equation*}
\mu(R, f) \geqq \rho(f(z)) \geqq \frac{\alpha^{\prime} \beta}{80 \log 2}\left(\frac{1}{1-R}\right)^{\lambda-1} \tag{4.11}
\end{equation*}
$$

since $1 /(1-r) \geqq 1 /(1-R)$.
Case 2). In this case, by (4.10)

$$
\begin{equation*}
1 /(1-R)<1 /\left(1-r-d_{1}(r)\right) \tag{4.12}
\end{equation*}
$$

On the other hand, we have by (4.7) and the definition of $d_{1}(r)$

$$
\begin{equation*}
1-r-d_{1}(r)=1-r-\frac{\left(1-r^{2}\right) \operatorname{th} \delta(r)}{1+r \operatorname{th} \delta(r)} \geqq(1-r) \frac{\alpha^{\prime}-2}{\alpha^{\prime}+2} \tag{4.13}
\end{equation*}
$$

From (4.12) and (4.13), we get

$$
\begin{equation*}
\frac{1}{1-r} \geqq \frac{\alpha^{\prime}-2}{\alpha^{\prime}+2} \frac{1}{1-R} . \tag{4.14}
\end{equation*}
$$

Thus by (4.9) and (4.14) we can obtain

$$
\begin{equation*}
\mu(R, f) \geqq \rho(f(z)) \geqq \frac{\alpha^{\prime} \beta}{80 \log 2}\left(\frac{\alpha^{\prime}-2}{\alpha^{\prime}+2}\right)^{\lambda-1}\left(\frac{1}{1-R}\right)^{\lambda-1} . \tag{4.15}
\end{equation*}
$$

In either case, therefore, we obtain from (4.11) and (4.15)

$$
\begin{equation*}
\varlimsup_{R \rightarrow 1}(1-R)^{\lambda-1} \mu(R, f) \geqq \frac{\alpha^{\prime} \beta}{80 \log 2}\left(\frac{\alpha^{\prime}-2}{\alpha^{\prime}+2}\right)^{\lambda-1} . \tag{4.16}
\end{equation*}
$$

Here α^{\prime} can be taken as near to λ as we please. This proves our Theorem 1.
5. Corollaries of Theorem 1. Suppose that for functions meromorphic in $|z|<1$

$$
\begin{equation*}
\mu(r, f)=K(1-r)^{-p}, \tag{5.1}
\end{equation*}
$$

where K is a positive constant and $1<p<\infty$. Then,

$$
\begin{equation*}
T(r, f)=O\left\{(1-r)^{-2 p+2}\right\} \tag{5.2}
\end{equation*}
$$

holds. Particularly, if $f(z)$ is a meromorphic function of order λ ($p<\lambda \leqq \infty, p>0$), from (5.1) and (5.2)

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1}(1-r)^{\frac{p}{8}+1} \mu(r, f)=\infty . \tag{5.3}
\end{equation*}
$$

For this, we can get the following result by the same method as in Theorem 1.

Corollary 1. If $f(z)$ is a regular function in $|z|<1$ and satisfies the condition (5.1), then

$$
\begin{equation*}
T(r, f)=O\left\{(1-r)^{-p-1}\right\} \quad(r \rightarrow 1) . \tag{5.4}
\end{equation*}
$$

This is a sharper estimate than (5.2) when $p \geqq 3$.
Proof. Suppose that for some positive constant β^{\prime}

$$
\varlimsup_{r \rightarrow 1} \frac{\log M(r, f)}{(1-r)^{-p-1}}>\beta^{\prime} K .
$$

Applying Lemma 2 with $\alpha=p+1, \alpha>\alpha^{\prime}>2$, and $\beta=\beta^{\prime} K$ to $\varphi(r)$ $=\log M(r, f)$, (3.4) and (3.5) hold. Hence, by the same method that (4.11) and (4.15) were obtained, we can get

$$
\begin{equation*}
\mu(r, f) \geqq \frac{\alpha^{\prime} \beta^{\prime} K}{80 \log 2}\left(\frac{\alpha^{\prime}-2}{\alpha^{\prime}+2}\right)^{p}\left(\frac{1}{1-r}\right)^{p} . \tag{5.5}
\end{equation*}
$$

Therefore, from our assumption we have

$$
\beta^{\prime} \leqq \frac{80 \log 2}{p+1}\left(\frac{p+3}{p-1}\right)^{p}<\frac{80 \log 3}{p+1}\left(\frac{p+3}{p-1}\right)^{p} \equiv \beta_{0} .
$$

Hence we get for $\beta^{\prime}=\beta_{0}$

$$
\begin{equation*}
\frac{\log M(r, f)}{(1-r)^{-p-1}} \leqq \beta^{\prime} K . \tag{5.6}
\end{equation*}
$$

Consequently, by a well-known inequality ([6], p. 220):

$$
\begin{equation*}
T(r, f) \leqq \log M(r, f) \leqq \frac{R+r}{R-r} T(R, f) \quad(r<R) \tag{5.7}
\end{equation*}
$$

we obtain (5.4). This completes the proof.
Further, we can get easily the next relation from Theorem 1.

Corollary 2. Suppose that $f(z)$ is a regular function of order $\lambda=\infty$ in $|z|<1$. Then, for arbitrarily large number $N>0$

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1}(1-r)^{N} \mu(r, f)=\infty \tag{5.8}
\end{equation*}
$$

6. Further Results. Next we shall show the following inequality which holds for regular functions of finite order.

Theorem 2. Let $f(z)$ be a regular function of order λ $(0 \leqq \lambda<\infty)$ in $|z|<1$. Then, for any positive number ε,

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1} \frac{(1-r) \rho(f(z))}{\exp \left[C(1-r)^{-2-1-\varepsilon}\right]}=O(1) \tag{6.1}
\end{equation*}
$$

holds, where C is a positive constant depending on $f(z)$ and ε.
Proof. By Cauchy's integral formula, we write

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{|\zeta-z|=r^{\prime}-r} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta, \tag{6.2}
\end{equation*}
$$

where $r^{\prime}=(1+r) / 2$ and $r=|z|$. Hence we get

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leqq \frac{1}{2 \pi} \int_{|\zeta-z|=r^{\prime}-r} \frac{|f(\zeta)|}{|\zeta-z|^{2}}|d \zeta| \\
& \leqq \frac{M\left(r^{\prime}, f\right)}{2 \pi\left(r^{\prime}-r\right)^{2}} 2 \pi\left(r^{\prime}-r\right)=\frac{2 M\left(r^{\prime}, f\right)}{1-r} \tag{6.3}
\end{align*}
$$

where $M\left(r^{\prime}, f\right)=\max _{|z|=r^{\prime}}|f(z)|$. On the other hand, by (5.7)

$$
\begin{equation*}
\log M\left(r^{\prime}, f\right) \leqq \frac{r^{\prime \prime}+r^{\prime}}{r^{\prime \prime}-r^{\prime}} T\left(r^{\prime \prime}, f\right) \tag{6.4}
\end{equation*}
$$

where $r^{\prime \prime}=\left(1+r^{\prime}\right) / 2$ and $r^{\prime}=(1+r) / 2$. Therefore we get

$$
\begin{equation*}
\log M\left(r^{\prime}, f\right) \leqq \frac{r^{\prime \prime}+r^{\prime}}{r^{\prime \prime}-r^{\prime}} T\left(r^{\prime \prime}, f\right) \leqq \frac{8}{1-r} T\left(r^{\prime \prime}, f\right) \tag{6.5}
\end{equation*}
$$

Since $f(z)$ is of order λ, for any positive number ε there exists a value $r(\varepsilon)$ such that for all $r>r(\varepsilon)$

$$
\begin{equation*}
T(r, f)<(1-r)^{-\lambda-\varepsilon} . \tag{6.6}
\end{equation*}
$$

Therefore using (6.5) and (6.6), we have

$$
\begin{equation*}
M\left(r^{\prime}, f\right) \leqq \exp \left[8 \cdot 4^{\lambda+\varepsilon}(1-r)^{-\lambda-1-\varepsilon}\right] \quad(r>r(\varepsilon)) \tag{6.7}
\end{equation*}
$$

From (6.3) and (6.7), we obtain

$$
\begin{equation*}
\rho(f(z)) \leqq\left|f^{\prime}(z)\right| \leqq \frac{2}{1-r} \exp \left[C(1-r)^{-\lambda-1-\varepsilon}\right], \tag{6.8}
\end{equation*}
$$

where $C=8 \cdot 4^{2+\varepsilon}$. Consequently we have (6.1).
From our proof of Theorem 2, we get:
Corollary 3. If $f(z)$ is regular and of bounded characteristic in $|z|<1$, then

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1} \frac{(1-r) \rho(f(z))}{\exp \left[C(1-r)^{-1}\right]}=O(1) . \tag{6.9}
\end{equation*}
$$

7. W. K. Hayman recently proved the following ([7]).

Theorem D. Suppose that $f(z)=\sum_{\nu=0}^{\infty} a_{n_{\nu}} z^{n_{\nu}}$ is mean p-valent in $|z|<1$ ([8], p. 23) and that

$$
\begin{equation*}
n_{\nu+1}-n_{\nu} \geqq C, \quad\left(\nu \geqq \nu_{0}\right) \tag{7.1}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
M(r, f)<A\left(p, C, \nu_{0}\right) \mu_{p}(1-r)^{-2 p / \sigma}, \quad 0<r<1 . \tag{7.2}
\end{equation*}
$$

Here $\mu_{p}=\max _{0 \leq n \leqq p}\left|a_{n}\right|, M(r, f)=\max _{|z|=r}|f(z)|$ and $A\left(p, C, \nu_{0}\right)$ denotes a particular constant depending on p, C, ν_{0} only.

From this Theorem D and our proof of Theorem 2 we obtain the following corollary.

Corollary 4. Suppose that $f(z)=\sum_{k=0}^{\infty} a_{n_{k}} z^{n_{k}}$ is mean p-valent in $|z|<1$ and that

$$
\begin{equation*}
n_{k+1}-n_{k} \geqq q \tag{7.3}
\end{equation*}
$$

holds. Then we get

$$
\begin{equation*}
\varlimsup_{r \rightarrow 1}(1-r)^{\frac{2 p}{q}+1} \rho(f(z))=O(1) \tag{7.4}
\end{equation*}
$$

where $0<p<\infty$ and q is an integer such that $q \geqq 1$.
Finally, I must express my deep gratitude to Prof. O. Ishikawa and Prof. N. Yanagihara for cordial guidance and many advices at many points.

References

[1] O. Lehto and K. Virtanen: On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity. Ann. Acad. Sci. Fenn., 240, 1-10 (1957).
[2] O. Lehto: The spherical derivative of a meromorphic function in the neighbourhood of an isolated singularity. Comment. Math. Helv., 33, 196-205 (1959).
[3] O. Lehto and K. Virtanen: Boundary behaviour and normal meromorphic functions. Acta Math., 97, 47-65 (1957).
[4] J. Clunie and W. K. Hayman: The spherical derivative of integral and meromorphic functions. Comment. Math. Helv., 40, 117-148 (1966).
[5] W. K. Hayman: A characterisation of the maximum modulus of functions regular at the origin. J. Analyse Math., 1, 135-154 (1951).
[6] R. Nevanlinna: Eindeutige analytische Funktionen. 2nd ed., Springer-Verlag. Berlin (1953).
[7] W. K. Hayman: Mean p-valent functions with gaps. Colloq. Math., 16, 1-21 (1967).
[8] -: Multivalent Functions. Cambriage (1958).

