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1. Introduction. In the previous paper [2 the author con-
sidered an abstract treatment of derivatives and integrals of Perron’s
type. S. Izumi 1 has given an abstract consideration of the gen-
eral and special Denjoy integrals using the lemma of P. Romanoski.

The aim of this paper is to extend and modify Izumi’s idea and
to obtain a more comphrehensive abstract integral which contains
the approximately continuous Denjoy integral (AD-integral) defined
by the author 3 as a special case.

2. Derivative and absolute continuity in abstract sense.
Let f(x)be a real valued function defined on the interval I=-a, b
and or,/ be real constants. We call an operation abDf(x) abstract
derivative of f(x) at x provided that

(i) if f(x) is differentiable at x in the ordinary sense then
abDf(x) =f’(x);

(ii) abD(af(x)+g(x))=aabDf(x)+abDg(x).
A real valued function F(x) is said to be absolutely continuous

in abstract sense on the set E, written by F e abAC, if the fol-
lowing conditions are satisfied.

(iii) If F ab AC and E’ E then F eab AC,.
(iv) If F, G e ab AC then aF+G e ab AC.
(v) If F is absolutely continuous in the ordinary sense on E

then F e ab ACE.
(vi) If FeabAC and E is closed then abDF(x) exists at

almost all points of E.
(vii) If F(x) is approximately continuous on (a, b) and is non-

decreasing on each complementary interval of closed set E with
respect to (a, b) and if F e abAC and abDF(x)>=O a.e. on E then
F(x) is non-decreasing on (a, b).

A finite function F(x) is said to be generalized absolutely
continuous in abstract sense on I=[a, b, symbolically F eab ACG,
if the interval I is the sum of a countable number of closed sets
E (k 1, 2 ...) such that F eab AC.

3. Abstract integral. Lemma 1. If a non-void closed set E
is the sum of a countable number of closed sets Ek (k=l, 2...),
then there exists an interval (/, m) containing points of E and an
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integer n such that (1, m).EcE.
For the proof, see for example E4, p. 143.
The next lemma, due to P. Romanovski, plays an essential role

in our theory.
Lemma 2 ([5, p. 543). Let F be a family of open intervals

in the open interval I0-(a, b) such that

( ) if h e F (k- l, 2, n) and if I-) I is an open
k=I

interval then I e F;
(ii) if IeF and I’I then I’eF;
(iii) if I I implies I’ e F then I e F;
(iv) if F is a subfamily of F such that F does not cover Io,

then there is an I e F such that F does not cover I.
Then Io F.
Theorem 1. If f(x) is approximately continuous on I= [a, b,

f eab ACG+/- and if abDf(x)>=O a.e. on I then f(x) is non-decreasing
on I.

Prooto First we observe that if f(x) is approximately continuous
on [a, b and is non-decreasing on (a, b) then f(x) is non-decreasing
on a, b. Let F be the system of all open intervals of (a, b) in
which f is non-decreasing. If we show that the family F satisfies
the conditions of Lemma 2, then f is non-decreasing on (a, b) by
Lemma 2. Hence f is also so on [a, b for the reason mentioned
above.

Evidently F satisfies the conditions (i), (ii), and (iii) of Lemma 2.
Let F be a subfamily of F such that F does not cover I0 and

E be the set of points not covered by F. Then E is clearly closed.
Since f(x)is abACG, the interval I is the sum of a countable
number of closed sets E (k-1, 2, ...) on each of which f is ab AC,
so that we have E= J E.E. It follows from Lemma 1 that there
exists an interval (1, m) and an integer n such that

(1, m).EE.
Hence f is abAC for G-(l, m).E by axiom (iii). Since f is non-
decreasing on each complementary interval of G with respect to
(/, m) and since feabAC and abDf(x)>=O at almost all points of
G, f is non-decreasing on (/, m) by axiom (vii), and hence (/, m)e F.
But (1, m)e F, for it contains points of E. Thus the condition (iv)
of Lemma 2 is satisfied, and the theorem is proved.

Corollary. If f(x) is approximately continuous on I= a, b
and feabACG and if abDf(x)-O a.e. then f(x) is constant on L

A extended real valued function f(x) defined on [a, b is said
to be Denjoy integrable in abstract sense on [a, b or abD-integrable
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if there exists a function F(x) which is approximately continuous,
abACG on a, b and abDF(x)-f(x) a.e. The function F(x)is
called an indefinite integral of f(x), and the definite integral of f(x)
on a, b, denoted by (abD) f(t)dt, is defined as F(b)-F(a).

Uniqueness of the definite integral follows from Corollary of
Theorem 1.

Theorem 2. If f(x) and g(x) are abD-integrable on a, b
then f(x)+g(x) is also so and we have

(abD) (cf+g)dt (abD) fdt+(abD) dt.

Proof. Since f and g are abD-integrable on [a, b, there exists
F(x) and G(x) which are both approximately continuous, ab ACG on
[a, b and satisfies the relations abDF(x)=f(x) a.e. and abDG(x)

g(x) a.e. The function aF+G is approximately continuous. It is
also ab ACG on [a, b by axiom (iv) and

abD(cF(x) / G(x))- cf(x) + g(x)
by axiom (ii). Hence cf+g is abD-integrable on [a, b and

(abD ) f i.(vf+ /g)dt- aF(b) +/G(b)- (aF(a) + G(a))

o(abD) f gt + ?(abD) g dr.

Theorem 3. If f(x) is abD-integrable on [a, b and f(x) >= O
a.e. then f(x) is L-integrable and

(abD f(t)dt- (L) f(t)dt.

Proof. Since f is abD-integrable on [a, b, there exists a
function F(x) which is approximately continuous, ab ACG on [a, b
and abD F(x)-f(x) a.e. Hence we have

abD F(x) f(x) >= 0 a.e.
It follows from Theorem i that F(x) is non-decreasing on [a, b, so
that F’(x) is L-integrable. By axiom (i), abD F(x)-F’(x)=f(x) a.e.
and therefore f(x) is L-integrable on [a, b. The identity

(abD) f(t)dt- (L) f(t)dt

follows from axioms (i) and (v).
Theorem 4. If {f(x)} be a convergent sequence of abD-integra-

ble functions on _a, b such that g(x) <=f(x) <= h(x), g(x) and h(x)
being abD-integrable, then the limit function f(x)-lim f,(x) is
abD-integrable and

lim (abD f,(t)dt- (abD f(t)gt.

Proof. Since f-g and h-g are abD-integrable and non-
negative, they are L-integrable by Theorem 3. We have clearly
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lim(f-g)--f-g and f-g<=h-g. It follows from Dominated
convergence theorem for Lebesgue integral that f-g is L-integrable
and

lim (L) (f- g)dt- (L) (f- g)dt.

Hence we get from Theorems 2 and 3 that the function f(x) is
abD-integrable and that

lim(abD) f,(t)dt-(abD) f(t)dt.

The author [ has defined the AD-integral as follows.
function f(x) is said to be AD-integrable on a, b if there exists
an approximately continuous function N(x) which is (ACG)on I-a,
and AD F(x)=f(x) a.e., where F(x) is termed (ACG) on [a, b when
he interval [a, b is the sum of a countable number of closed sets
on each of which F(x) is absolutely continuous in ordinary sense.
The definite AD-integral (AD) f(t)dt is defined as N(b)-F(a).

If we take abACG as (ACG) and abD as AD then the abD-
integral becomes the AD-integral. Also the general Denjoy integral
is obtained if we take ab ACG and abD as ACG and AD respectively;
because a function which is ACG on a, b is necessarily (ACG) on
[a, b for the continuity.

We can deduce further properties of the (abD)-integral in usual
way when we add some axioms to the system of axioms (i)(vii).
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