7. On Connections of Geometric Structures

By Kwoichi TANDAI

Yoshida College, Kyoto University

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1968)

Let G_0 and \tilde{G} be Lie groups and $\rho: \tilde{G} \to G_0$ be a homomorphism. G_0 acts on another Lie group K from the left distributively:

 $a \cdot (k_1 \cdot k_2) = (a \cdot k_1) \cdot (a \cdot k_2)$ for $a \in G_0$ and $k_1, k_2 \in K$.

Let $\Theta: \widetilde{G} \rightarrow K$ be a C^{∞} -mapping such that

(1) $\Theta(a \cdot b) = \{\rho(b^{-1}) \cdot \Theta(a)\} \cdot \Theta(b).$

Then clearly $G = \{a \in G : \Theta(a) = 1\}$ is a closed subgroup of \widetilde{G} and we have the

Proposition 1. There is a canonical action of \tilde{G} on K from the right, defined by

(2) $k \cdot a = \{\rho(a^{-1}) \cdot k\} \Theta(a), \text{ where } k \in K \text{ and } a \in \widetilde{G}.$

Assume that $P(M, \tilde{G})$ be a C^{∞} -differentiable principal fibre bundle over a C^{∞} -manifold M of n dimensions. The we have two induced fibre bundles $T(M, K, \tilde{G})$ and $B(M, K, \tilde{G})$ over M with fibre K, associated with $P(M, \tilde{G})$, determined by ρ and the action of \tilde{G} on Kin Proposition 1, respectively. A C^{∞} -cross-section of $T(M, K, \tilde{G})$ is called, by the abuse of language, as a tensor field on M of type ρ , while we define a connection of type $(P(M, \tilde{G}), \rho, \theta)$ as a C^{∞} -crosssection ω of $B(M, K, \tilde{G})$.

Proposition 2. If ω_1 and ω_2 are two connections of type $(P(M, \tilde{G}), \rho, \Theta)$, then $\omega_1 \cdot \omega_2^{-1}$ is a tensor field on M of type ρ . It must be remarked that in the above proposition $\omega_1^{-1} \cdot \omega_2$ is not necessarily a tensor field of type ρ , unless K is abelian.

Our definition generalizes that of Gunning [2], who studied the case where K is a vector space, $G_0 = GL(K)$ and $P(M, \tilde{G})$ is $F^r(M)$ we define below.

Proposition 3. The definition of the connection above includes those of principal fibre bundles of Ehresmann [1], of vector bundles as splittings of short exact sequences (cf. P. Libermann [6]), and of the bundles of higher order defined by Ehresmann (cf. N. V. Quê [7]), provided that $P(M, \tilde{G})$, ρ , Θ are suitably chosen.

The proof is easily checked in all cases.

In the applications important is the following

Proposition 4. If M is paracompact and K is a connected nilpotent Lie group, then there is a connection of type $(P(M, \tilde{G}) \rho, \Theta)$.

In the following we consider affine connections of higher order, as an example. Let $F^{r}(M)$ (resp. $F^{(r)}(M)$) be the set of all invertible holonomic (resp. semi-holonomic) r-jets with source $O \in \mathbb{R}^n$ and targets in M. Then $F^r(M)$ (resp. $F^{(r)}(M)$) is a differentiable principal bundle over M with fibre $G^r(n)$ (resp. $G^{(r)}(n)$). Then we have surjective homomorphisms: π^r : $G^r(n) \rightarrow GL(n, R)$ (resp. $\pi^{(r)}$: $G^{(r)}(n) \rightarrow GL(n, R)$) and s^r : $G^{(r)}(n) \rightarrow G^r(n)$, such that $\pi^{(r)} = \pi^r \cdot s^r$, where s^r is called the symmetrization operator. We put $K^r = \text{Ker } \pi^r$ (resp. $K^{(r)} = \text{Ker } \pi^{(r)}$). On the other hand, we have canonical injections of Lie groups:

 $i^r: GL(n, R) \rightarrow G^r(n)$ (resp. $i^{(r)}: GL(n, R) \rightarrow G^{(r)}(n)$) and $j^r: G^r(n) \rightarrow G^{(r)}(n)$, such that $j^r \cdot i^r = i^{(r)}$. Then we may consider $GL(n, R) \subset G^r(n) \subset G^{(r)}(n)$, by which we define the mapping $\Theta^r: G^r(n) \rightarrow K^r$ (resp. $\Theta^{(r)}: G^{(r)}(n) \rightarrow K^{(r)}$), satisfying the condition (1). Namely, $\Theta^{(r)}(a) = \rho(a^{-1}) \cdot a, \Theta^r = \Theta^{(r)} | G^r(n)$ and the action of GL(n, R) on $K^{(r)}$ is defined by $a \circ k = a \cdot k \cdot a^{-1}$ with respect to the multiplication in $G^{(r)}(n)$, which is clearly associative. A connection $\omega^r(\text{resp. }\omega^{(r)})$ of type $(F^r(M), \pi^r, \Theta^r)$ (resp. $(F^{(r)}(M), \pi^{(r)}, \Theta^{(r)})$) is called a symmetric affine connection (resp. affine connection) of order r. If r=2, it is the same as the classical one. From Proposition 4, follows the

Proposition 5. On a paracompact differentiable manifold M, there always exists a symmetric affine connection (resp. affine connection with torsion) of order r.

Here, the torsion tensor field T^r of an affine connection $\omega^{(r)}$ of order r is defined by $T^r = \omega^{(r)} \cdot s^r(\omega^{(r)})^{-1}$. $\omega^r(\text{resp. }\omega^{(r)})$ is equivalent to a group reduction of the group $G^r(n)$ (resp. $G^{(r)}(n)$) of $F^r(M)$ (resp. $F^{(r)}(M)$) to GL(n, R).

Proposition 6. The vanishing of the torsion tensor field of an affine connection $\omega^{(r)}$ of order r is the same as the obstruction condition that the group reduction of $F^{(r)}(M)$ to GL(n, R), determined by $\omega^{(r)}$ is factored through by the canonical group reduction j^r : $F^r(M) \rightarrow F^{(r)}(M)$.

If there is given a closed Lie subgroup of $G^{r}(n)$ (resp. $G^{(r)}(n)$), for instance, as in the case of projective structure without torsion (resp. with torsion) (cf. Gunning [2], and Kobayashi and Nagano [3]), we can discuss the connection theory for the G-structure of r-th order.

References

- [1] C. Ehresmann: Les connexions infinitésimales dans un espace fibré differentiable. Colloque de topologie, Bruxelles, 29-55 (1950).
- [2] R. C. Gunning: Connections for a class of pseudogroup structures. Proc. of Conference on Complex Analysis, Springer Verlag, 186-194 (1965).
- [3] S. Kobayashi and T. Nagano: On projective connections. J. Math. Mech., 13, 215-236 (1964).
- [4] M. Kawaguchi: Jets semi-holonomes et tenseurs non-symmétriques d'ordre supérieur. I. J. Fac. Sci. Hokkaido Univ. Ser., I, 16, 193-213 (1962).
- [5] S. Kobayashi: Canonical forms on frame bundles of higher order contact.

Proc. Symposia in Pure Math., vol. 3, Differential Geometry. A.M.S., 186-193 (1961).

- [6] P. Libermann: Sur la géométrie des prolongements des espaces fibrés vectoriels. Ann. Inst. Fourier, Grenoble, 14, 145-172 (1964).
- [7] N. V. Quê: Du Prolongement des espaces fibrés et des structures infinitésimales. Mimeographed Note (1966).
- [8] K. Tandai: Introduction to the theory of higher order manifolds. Kikagakukôenshû, 93-118 (1964) (in Japanese).
- [9] J. Virsik: Über Zusammenhänge höherer Ordnungen in Vektorraumbündeln. Math. Nachrichten, 34, 219-227 (1967).