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Faculty of Engineering, Ibaraki University

(Comm. by Kinjir5 KUNUCI, M.Z..., Jan. 12, 1968)

Introduction. In this paper we discuss classes of power bounded
operators on a Hilbert space H and we use the notations and
terminologies of 5. Following 1 2 5., an operator T on H
possesses a unitary p-dilatation if there exists a Hilbert space K
containing H as a subspace, a positive constant p and a unitary
operator U on K satisfying the following representation
(l) T=p.PU (n=l, 2, ...)
where P is the orthogonal projection of K on H. Put C the class
of operators, whose powers T admit a representation (1).

It is well known that T e C is characterized by II T __<1. More-
over Te C. is characterized by II TII__<I, where TII, usually
called the numerical radius of T, is defined by

It T ll-supl(Th, h) for every unit vector h in H.
The latter fact was discovered by C.A. Berger (not yet published).

Using function theoretic methods, B. Sz-Nagy and C. Foias have
given a characterization of C and shown the monotonity of C as
a generalization of C and C.. Hence we may naturally expect that
the condition for T C depends upon II T II and II T I1 together. In
this paper, as a continuation of calculations in the preceding paper
3, we give a simple sufficient condition for T C related to both
II T II and II T II and its graphic expression.

1. The following theorems are known.
Theorem A (5). An operator T in H belongs to the class

Co if and only if it satisfies the following conditions:

(I) .. h ..-2(1-)Re(zTh, h)+(1--)lt zTh ..>=0
(i) for h in H and ]z]>=l,

(II) the spectrum of T lies in the closed unit disk.
(ii) If p<=2, then the conditon (I) implies (II).

Theorem B (5). Co is non-decreasing with respect to the
index p in the sense that

Co Co. if 0 <=p< p..
Theorem C ([1).
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(i) fIf II T <-- 2 and 0_<p=<l,_ then T e C.
If ]] T]]=<I, then TeC for pl.

(ii) IIf T e C for 0<p=<l,= then r(T)<__ 2-pP
If T e C for p>=l, then r(T)__<l.

where r(T) means the spectral radius of T.
An operator T is called to be normaloid if I] T II=]I T]I or

equivalently the spectral radius is equal to II T II (4).
Theorem D (13). If T is normaloid, T C if and only if

P if 0<__p<_l
II Tll=< 2-p

i if p>=l
Theorem D was proved by E. Durszt for normal operators and

by C.A. Berger and J.G. Stampfli ([1). The author has given a
simplified proof of the same theorem in [3 independently.

2. For 0=<p=<2, the condition (/) is replaced by
(2-p) II zTh [}-2(1-p)Re(zTh, h)-p {} h {10 for h e H.

That is,
(I) (2-p) II Th IIr-2(1-p) l(Th, h) r.cos -p=<0
for every unit vector h in H, where z-re, 0=<r=<l,-+ and

is the argument of (Th, h). Since the left-hand side of (I) is
negative for r (0=<r__<l) if it is so at r-l, (I) is equivalent to
(I’) (2-p) tl Th 1t-2(1-p) l(Th, h) cos -p__<0
for every unit vector h in H.

P if 0__<p_<l
Theorem 1. (5) implies [[ T{}_<_ 2-p

1 if 1__<p=<2.
Proof. Let 0__< p=< 1. By (I’), (I) is equivalent to

F(p, h)=-(2-p) Th [l+2(1-p) (Th, h)[-p=<0
for every unit vector h in H. That is

(I) is true if and only if sup F(p, h) <= O.
The following inequality is clear
(.) (2-p)[[ Tli+2(1-p)[1TII-P<= sup F(p, h)=<(2-p)]] T]]

+2(l-p) {{ T{{-p<=(2-p){{ T ]{+2(1-p)[[ T]{-p.
Consequently (I) implies

(2- p) T I+2(1- p) T l- P--< 0,
(11T I{+ 1).{(2-p)tl

Hence

{IT{I.=< ,o

Now let 1=<p=<2, then the condition (I[’) is equivalent to
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F.(p, h)_=(2-p)II Th 11/2(p-1) (Th, h)
for every unit vector h in H. That is

(5) is true if and only if sup F(p, h) gO.
The following inequality is also clear.
(**) (2-p)][ T]]+2(p-1)]] T]]-pg sup F(p, h)g(2-p) T][

lhl=
+2(p-1) ]] T] -pg(2-p)]] T ]]+2(p-1)]]

Consequently (I) implies

Hence
]ITII q.e.d.

Theorem i gives a precise limitation of ] T ]] for T e C. Since
r(T) g T ]] (4) we get immediately.

Corollary 1 (5). For pg2, (L) implies (H).
C. A. Berger has characterized Te C by ]] T]]gl. This fact

and the monotonity of C give the corollary 1. But in our method
the estimation of ]] T ]] comes to give the proof without complicated
calculations. Moreover by (.) and (**) in the proof of Theorem 1
we can sharpen Theorem C and give a simple sufficient condition for
T e C as shown in the next section.. The following theorems are obvious by Theorem I and
inequalities (.), (**).

Theorem 2. (i) For Ogpgl. TeC if and only if
sup F(p, h) O. (ii) For 1 p 2. T C ifand only ifsup F(p, h) O.
Ilhll= Ilhll=

Theorem 3.

(ii) For l<pg2.
Theorem 4. (i)

-p<=O, then T eC.
(ii) For 1<p<2.

TeC,.
Corollary 2 ([1). (i) For 0<p<l.

TeC,.
(ii) For p>l. If ttTII <1, then TeC,.

For 0<_p<l. If Te C, then II Tt P
2-p

If T e C, then II T I <1.
For O<p<l. If (2-p) [[ T[[+2(1-p) [[ T[[

If (2-p)II Tll+2(P -1) [[ TIIN--P <0, then

If II T II then
2-p

Proof of Corollary 2. (ii) is clear and (i) is also derived
from (i) of Theorem 4 replacing [[ T [[ by T [[. q.e.d.

Theorem 5. There exists k in 1/2, 1 such that
(i) if TeC for 0=<p<l, then (2-p) llT[ik+2(1-p)[[T[[

-p<O.
(ii) if TeC, for 1=<p<2, then (2-p)]]TIlk+2(p-1)]]TII

-p_<_0.
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Proof. Take sequences of unit vectors {h} in (.) and (**)
which (The, h.) converges to T I, then II T I=<sup
By this inequality and 1/211TII<=IITII<=IITII ([4), we get Theorem
5. q.e.d.

4. We consider an operator T which II TII and I[TII equal s

s/2 respectively. For example T-(su ). We can showand

s, T-s/2 and r(T)- 0 by simple calculations. Then by The-
orem 4 we know - if 0sl

,_,+ if 1s2.
In [4 it is shown that TeC, if 0sl. But by our esti-

mation we get more precisely

s2+s+1

However it is known by Durszt 2 that this operator belongs to
more narrow class G.. On the other hand we get the following
inequality by Theorem 3

s if 0sl
s/2a 2- s

1 if 1s2.
Thus we know Theorem 3 and 4 give sharpenings of Theorem C
exactly.

5. Theorem 4 indicates a sufficient condition for T e C, (0 p 2)
depending upon [[ T and ][ T together. We can represent the
relation among operator norm [[ T [[, numerical radius [1T [] and this
sufficient condition by a domain ODE or OAF in a triangle OAB in
the figure below. The curves DE and AF are given by

F,(p)(2-p) TI +2(1-p) TII-p-O for Oapa
F(p)(2-p) ] T[[+2(p-1)]] T[I-p-O for 1p2

respectively.
When pl, F(p) and F(p) gradually close to [[ T[[-I-0 and

the curves DE and AF close to the vertical line AC. Moreover F(p)
passes A(1, 1) for every p and when p2, F(p) gradually close to
[[ T[]-I-0 and the curve AF closes to the horizontal line AB.
The triangular domains OAC and OAB indicate the necessary and
sufficient condition for T to belong to C and C respectively. The
line OA indicates the degenerated domain which give the necessary and
sufficient condition for a normaloid operator T to belong to C(0pl),

where the eoordinates of Dare( p P ) by heorem 4 and

heorem D.
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