14. On Equivalences of Laws in Elementary Protothetics. II

By Kazuo Chikawa

(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1968)
In our previous paper [1], we have proved the equivalences of the two laws (i.e., the law of development and the law on the limit of a function).

In this paper, we shall prove the equivalence of the theorems (a) and (a^{\prime}) which have been called the generalized law on the limit of a function. The rules of inference, substitution and replacement used in the systems of elementary protothetics has in detail given in J. Słupecki [2], and our paper [1].
(a) $[f, q]\{[p]\{f(p)\} \equiv f(q) \cdot f(\sim(q))\}$,
($\left.\mathbf{a}^{\prime}\right) \quad[f, r, s]\{[p, q]\{f(p, q)\} \equiv f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r)$, $\sim(s))\}$.
To show the equivalence mentioned above, we shall first prove the following theorem.

Theorem 1. $[f, r, s]\{[f, q]\{[p]\{f(p)\} \supset f(q) \cdot f(\sim(q))\} \cdot[u, v]\{f(u, v)\}$ $\supset f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))\}$.

Proof. (1) $[f, q]\{[p]\{f(p)\} \supset f(q) \cdot f(\sim(q))\}$,
(2) $[u, v]\{f(u, v)\} \supset$
by replacing the variables u, v in the assumption (2) with a variables r, s, we obtain the following expression:
(3) $f(r, s)$.

By a similar procedures, we obtain the following expression:
(4) $f(r, \sim(s))$,
(5) $f(\sim(r), s)$,
(6) $f(\sim(r), \sim(s))$, $f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))$.
To obtain the consequent we have used the following theorem of the propositional calculus:

$$
[p, q, r, s]\{p \supset(q \supset(r \supset(s \supset p \cdot q \cdot r \cdot s)))\}
$$

therefore we complete the proof of Theorem 1.
Theorem 2. $[f, q]\{[f, r, s]\{[p, q]\{f(p, q)\} \supset f(r, s) \cdot f(r, \sim(s))$. $f(\sim(r), s) \cdot f(\sim(r), \sim(s))\} \cdot[u]\{f(u)\} \supset f(q) \cdot f(\sim(q))\}$.

Proof. (1) $[f, r, s]\{[p, q]\{f(p, q)\} \supset f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s)$. $f(\sim(r), \sim(s))\}$,
(2) $[u]\{f(u)\} \supset$

By replacing the variable u in the assumption (2) with a variable q,
we obtain the following expression :
(3) $f(q)$,
(4) $f(\sim(q))$, $f(q) \cdot f(\sim(q))$,
in the last line of the proof we have applied the following theorem of the propositional calculus:

$$
[p, q]\{p \supset(q \supset p \cdot q)\}
$$

consequently we complete the proof of Theorem 2. Therefore we have obtained Theorem 3 by applying the following theorem of the propositional calculus to Theorem 1 and Theorem 2:

$$
[p, q, r, s]\{((p \supset q) \cdot r \supset s) \supset(((r \supset s) \cdot p \supset q) \supset((p \supset q) \equiv(r \supset s)))\}
$$

Theorem 3. $[f, q]\{[p]\{f(p)\} \supset f(q) \cdot f(\sim(q))\} \equiv[f, r, s]\{[p, q]$ $\{f(p, q)\} \supset f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))\}$.

Next we shall prove the following theorem:
Theorem 4. $[f, r, u, s]\{[f, q]\{f(q) \cdot f(\sim(q)) \supset[p]\{f(p)\}\} \cdot f(r, s)$ $f(r, \sim(s)) \supset \psi \leqslant f, u>(r)\}$. Where, we introduce the following definition:

D1 $[f, p, q]\{\psi<f, p>(q) \equiv f(q, p)\}$.
Proof. (1) $[f, q]\{f(q) \cdot f(\sim(q)) \supset[p]\{f(p)\}\}$,
(2) $f(r, s)$,
(3) $f(r, \sim(s))$
(4) $\chi<f, r>(s)$,
where, we introduce the following definition:
D2 $[f, p, q]\{\chi<f, p>(q) \equiv f(p, q)\}$.
(5) $\chi<f, r>(\sim(s))$,
(6) $\chi<f, r>(u)$,
(7) $f(r, u)$,
(D2, 6) $\psi<f, u>(r):$
therefore we complete the proof of Theorem 4. Further, we shall prove the following theorem:

Theorem 5. [f,r,s,u,v]\{[f,q]\{f(q)•f(~(q))D[p]\{f(p)\}\}•
$f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)) \supset f(v, u)\}$.
Proof. (1) $[f, q]\{f(q) \cdot f(\sim(q)) \supset[p]\{f(p)\}\}$,
(2) $f(r, s)$,
(3) $f(r, \sim(s))$,
(4) $f(\sim(r), s)$,
(5) $f(\sim(r), \sim(s))$
(6) $\psi<f, u>(r)$, (Theorem 4; 1; 2;3)
(7) $\psi<f, u \rightarrow(\sim(r))$, (Theorem 4; 1; 4; 5)
(8) $\psi<f, u>(v)$,
(1; 6; 7)
$f(v, u)$,
(D1; 8)
then we complete the proof of Theorem 5. Therefore we have obtained Theorem 6 by applying the following theorem of the
propositional calculus to Theorem 5:

$$
[p, q, r]\{(p \supset q) \cdot(p \supset r) \supset(p \supset q \cdot r)\}
$$

Theorem 6. $[f, r, s]\{[f, q]\{f(q) \cdot f(\sim(q)) \supset[p]\{f(p)\}\} \cdot f(r, s)$. $f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)) \supset[u, v]\{f(u, v)\}\}$.

Next, we shall prove the following theorem.
Theorem 7. $[f, q, u]\{[f, r, s]\{f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s)$. $f(\sim(r), \sim(s)) \supset[p, q]\{f(p, q)\}\} \cdot f(q) \cdot f(\sim(q)) \supset f(u)\}$.

Proof. (1) $[f, r, s]\{f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))$ $\supset[p, q]\{f(p, q)\}\}$,
(2) $f(q)$,
(3) $f(\sim(q)) \supset$,
where, we introduce the next definitions:
D3 $[p]\{v r(p) \equiv(p \equiv p)\}$,
D4 $[f, p, q]\{\omega \Leftarrow f \Rightarrow(p, q) \equiv(f(p) \equiv v r(q))\}$.
By applying the theorem
$[f, p, q]\{\omega \Leftarrow f \Rightarrow(p, q) \equiv f(p)\}$,
in elementary protothetics to the expression (2), we obtain the following expression:
(4) $\omega \Leftarrow f \Rightarrow(q, v)$,
(5) $\omega \Leftarrow f \Rightarrow(q, \sim(v))$,
(6) $\omega \Leftarrow f \Rightarrow(\sim(q), v)$,
(7) $\omega \Leftarrow f \Rightarrow(\sim(q), \sim(v))$,
(8) $\omega \Leftarrow f \Rightarrow(s, t)$,
(9) $\omega \Leftarrow f \Rightarrow(u, u)$, $f(u)$.
Therefore we complete the proof of Theorem 7. Then we easily obtain the following theorem from Theorem 7.

Theorem 8. $[f, q]\{[f, r, s]\{f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r)$, $\sim(s)) \supset[p, q]\{f(p, q)\}\} \cdot f(q) \cdot f(\sim(q)) \supset[u]\{f(u)\}\}$. Therefore we have the following Theorem 9 by applying the following theorem of the propositional calculus to Theorem 6 and Theorem 8.

Theorem 9. $[f, q]\{f(q) \cdot f(\sim(q)) \supset[p]\{f(p)\}\} \equiv[f, r, s]\{f(r, s)$. $f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)) \supset[u, v]\{f(u, v)\}\}$.
Then we have Theorem 10 from Theorem 3 and Theorem 7.
Theorem 10. $[f, q]\{[p]\{f(p)\} \equiv f(q) \cdot f(\sim(q))\} \equiv[f, r, s]\{[p, q]$
$\{f(p, q)\} \equiv f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))\}$.
Theorem 10 states that the generalized law on the limit of a function of one argument is equivalent to that of a function of two arguments. Therefore we complete the proof of the equivalence of the generalized law on the limit of a function in elementary protothetics.

References

[1] K. Chikawa: On equivalences of laws in elementary protothetics. I. Proc. Japan Acad., 43, 743-747 (1967).
[2] J. Słupecki: St. Leśniewski’s protothetics. Studia Logica, 1, 44-112 (1953).

