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32. On Generalized Integrals. I

By Shizu NAKANISHI
(Comm. by Kinjird KUNUGI, M. J. A,, March 12, 1968)

1. Introduction. Prof. K, Kunugi introduced, in 1954, the no-
tion of ranked spaces, in the Note [2], as an extension of the metric
space, and introduced further, in 1956, the notion of a generalized
integral, in the Note [3], based on his theory of ranked spaces and
called it the (E.R.) integral. In fact, to give the definition of his
generalized integral, he started with the set & of step functions
defined on a finite interval a<a<b, that is, functions having a con-
stant value «; in each of a finite number of sub-intervals a,;,_, <z <a;
in a division of a<z<b:a,=a<a,--- <a,=b, as to the endpoints
of these sub-intervals, we can assign values of the functions there
arbitrarily. He supposed the integral defined for these functions, as
usual, by the sum >} a;(a;—a;_,). He introduced on the set & the set
of neighbourhoods ‘defined in the following way: Given a non-nega-
tive integer v, a closed subset F' of the interval a<x<b and a point
f of &, the neighbourhood V(F,y; f) of f is the set of all step funec-
tions g(x) such that: g(x)— f(x) is expressed as a sum of two step
functions p(x) and v(x) satisfying the following conditions:

[1] v(x)=0 for all zekF,

r27 {p@)da<z,

3] ’SZ“/(x)dx <2

Under this topology, &€ becomes a uniform space the depth of which
is w,, and so the indicator of &€ should be w,. The set B, of neigh-
bourhoods of rank v(v=0,1,2, ...) is formed by the neighbourhoods
V(F,v; f) with mes ([a,b]\F)<2™."” In this ranked space &, we
see that if w: {V(F,, v,; f.)} is a fundamental sequence of neighbour-
hoods, theb limit f(x)=lim f,(x) exists almost everywhere, and the

integrals S fu(x)dx converges to a finit limit. This suggests that it

should be possible to take this limit as the value of the integral of
f(x). As a formula

b b

S f(w)dleimg fu(@)da.
To justify this convention, he showed that it does not depend on
the particular choice of the fundamental sequence of neighbourhoods,

1) For the sets E and F, E\F denotes the set of all those points of £ which
do not belong to E.




134 S. NAKANISHI [Vol. 44,

that is, if w: {V,(f,)} and v:{V.,(g.)} are two fundamental sequences

belonging to the same maximal collection #* (he introduced the notion

of maximal collection, corresponding to the notion of “equivalence”

between fundamental sequences in a metric space), then we have”
lim £, (%) =lim g,(x) a.e.

and lim Sb Su(@)dx=1im S ' g.(x)dx.

n—c0

But, the set of functions integrable in this sense is not linear, nor
the generalized integral is a linear functional. In order to guarantee
both linearities, on the fundamental sequences he imposed additional
conditions, precisely the conditions P and P*, which are independent
on the notion of fundamental sequences.

The same reason will also be seen in the different definition from
Kunugi’s given by H. Okano in [5] for the (E. R.) integral,

On the other hand, I. Amemiya and T. Ando, in [1], proved
that Kunugi’s generalized integral? is identical with A-integral.
Moreover, they showed that the set of functions integrable in the
generalized sense is the completion of the set of Lebesgue integrable
functions with respect to the quasi-norm

1£ 1l =sup|§ L fw)1*de | +sup & mes {o; | ) 2},

where the function [ f(x)]*, the truncation of f(x) by the positive
number k, is defined by
S(z) it | flx)|<F,

k__

@ ={ s ey it | A& >,
Hence, there arises a question whether, if we introduce suitably a
set of neighbourhoods on a set & and define suitably a rank, the
set of (E.R.) integrable functions can be obtained as a completion
of the set &, In papers I, I, and III, we will give a positive answer
to it. We will construct a completion of &, actually obtaining a
ranked space of (E.R.) integrable functions to which the integral
admits a unique and natural extension,

To do this, first we will show, in this paper, a few properties
about the space &.

Let us recall the notion of ranked spaces.

Definition of the depth of the space. Consider a set R (called
a space) endowed with such a structure that each point p of R has
a non-empty set of subsets of R (denoted by V(p) and called neigh-
bourhoods of p) satisfying the axioms (A) and (B) of Hausdorff.»
Given a point p of B, we say that a monotone decreasing sequence

2) This integral, moreover, has been extended by K. Kunugi[4] and H. Okano [5].
3) F. Hausdorff: Grundziige der Mengenlehre. Leipzig (Veit), p. 213 (1914).



No. 3] Generalized Integrals. I 135

of neighbourhoods V,(p) is “type v”’, where 7 is an ordinal number
of Cantor, if a runs through the set 0<a <~ of all ordinal numbers
and if V,(p)2 Vi(p) for all a, 8 with 0<a<B<:

(1) Vi@)2Vi(p)2 -+ 2V(») -+, 0<a<y.
The sequence (1) which has no neighbourhoods U(p) such that
N V. (p)2U(p) is said to be “mawximal”’. We denote by w(R, p) the

s(J‘rnallest ordinal number of types of maximal monotone decreasing
sequences of neighbourhoods of p. Now, we consider such a space
that there is at least one point having a maximal monotone de-
creasing sequence of neighbourhoods. The smallest ordinal number
o(R, p),p€ R, is called the depth of R and denoted by w(R). w(R)
is an inaccessible ordinal number (or regular).*

Definition of the ranked space. Let us choose once for all an
inaccessible ordinal number @ such that w,<w<w(R). o is called
“indicator” of R. Given an ordinal number @, which runs through
the interval 0<a<w, suppose that we have a set 8B, of neighbour-
hoods, called neighbourhoods of rank «. Then R is said to be a
ranked space, if the sequence of sets L,(0<a<w) satisfies the follow-
ing axiom (a):

(a) For every neighbourhood V(p) of » (pe R) and for every
ordinal number « such that 0<a<w, there exist an ordinal number
B and a neighbourhood U(p) of p such that we have at the same
time

a<p<o, Up)<S V(p), Ulp) € Bs.

Definition of the fundamental sequence or Cauchy sequence.
Let B be an inaccessible ordinal number such that 0<f8<w. Then
a monotone decreasing sequence of neighbourhoods of points:

Ifo(po)2 ‘Vl(pl)2 e 2 Va(pa)g M) OSa<By
is said to be fundamental or of Cauchy, if there is an ordinal number
v(«) such that V,(p.) €L, for all a;0<a<p, and satisfies the
following two conditions:

(1) O)<7()< -+ <@L -+ (0<a<P)

(2) for each a such that 0<a<p, there is a number i=2(«)
such that a<1<pB, p;=p:;, and 7(A)<v(2+1)(except the equality).

Given two monotone decreasing sequences of points wu: {V,(p.)}
and v: {Vs(gs)}, we denote by u>v the relation between » and v such
that for every V,(p,) thereis a Vi(gs) contained in V,(p,). We will
introduce, with Y. Yoshida, the notion of maximal collection in a slight
different form from Kunugi’s. A set u* of fundamental sequence

4) A limit number « is said to be ‘‘inaccessible”, if, for every g with <« and

for every function a(y) defined for r with 0<y<p, such that 0<a(y)<«a, we have
always sup a(y)<a.
7
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is said to be a maximal collection, if it satisfies the following con-
ditions:

1*) for wewu* and veu*, there is a weu* such that w>u
and w>v,

(2*) there is no set v* of fundamental sequences with the prop-
erty (1*), strictly containing u*.

2. Spaces of step functions. To fix the ideas, we consider
the real valued functions y=jf(x) defined on the interval [a, b], that
is, the set of all ¢ such that a<a<b, where a, b are arbitrary two
real numbers such that a<b. We start with the set & of step
funections, following K. Kunugi, only to avoid assuming anything of
the theory of integration, and we suppose the integral defined by
the sum > a,(a;—a,;_,) for the step function having a constant value
«; in each of a finite number of sub-intervals a, ,<x<a,.

Let us now introduce on the set £ a set of neighbourhoods.

Definition 1. Given a closed subset F' of [a,b], a positive
number ¢ and a point f of &, the neighbourhood of f, denoted by
V(F,¢; f) or simply by V(f), is the set of all those step functions
g(x) which are the sums of f(x) and the other functions ¥(x) having
the following properties:

la] |r@)<e for all zeF

[B] kmes{x;|r)|>k}<e for each k>0,

Lv] Igi[r(x)]"dw1<e for each £>0,

where [r(x)]* is the truncation of »(z) by k. Then, the neighbour-
hoods satisfy the axioms (A) and (B) of Hausdorff. To see the depth
of &, we first show the following lemma:
Lemma 1. If the neighbourhoods V(A, ¢, f) and V(B, 1; g) have
the relation V(A,c¢; f)2V(B,n; g9), then mes(A\B)=0 and e>7.
Proof. Suppose, if possible, that mes (4\B)>0. Let 7’ be a
positive number with 0<7’<7%, then there is a finite set of disjoint
intervals I;(1=1,2, ...,4,) contained in the set [a,b]\B and with
’/2e>mes(UI)>mes((UI)ﬂA)>O Put r(x)= 77’/mes(UI) on UI
and zero elsewhere then h(x) g(x)+r(x) e V(B,7n; g), but e V(A,zs; f)
Next suppose that e<n, if possible. Since mes (A\B)=0, thereis a
finite set of disjoint intervals I;,(:=1, 2, ---, ¢,) such that mes(A4")>0
and mes(UI)<1 where A’—(UI)ﬂAmB Put a= maxlf(x) g(x)|

and let 1 be a number >1 with mes {a; | flx)— g(x)i>a/2 xe A}>0,
then there is a &’ with e<a/2+a’<7y, since a/i<a<e<?. Put
r(x)=a’ sign (f(x)—g(x)) on UI; and zero elsewhere, then h(x)=g(x)
+r(x) e V(B, n; 9) but ¢ V(4, ¢; f), in contradiction to the hypothesis.
Proposition 1. & is a space the depth of which w,.
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Proof. For each fe&, the monotone decreasing sequence of
neighbourhoods {V{([a, b], 1/n; )} is maximal. For, if not, there is
a V(B,n; f) with V(B, n; /)< N V([a,b], 1/n; f), and then =0 from
Lemma 1, contrary to 7>0. "Hence o(R)=w,.

For v=0,1,2, ---, a neighbourhood V(F, y; f) is said to be rank
y, if it satisfies the condition

[0] mes([a,b]\F)<e and ¢=27",
and by B, the set of all neighbourhoods of rank y. Then, the rank
so defined satisfies the condition (a). For, given a neighbourhood
V(A,¢; f), we have V([a,b], 1/n; )SV(A,¢; f) for every n with
1/2"<e. Therefore, it follows that:

Proposition 2. & s a ranked space.

Lemma 2. Let u:{V(A4,,¢,; f.)} be a monotone decreasing se-
quence for which mes ([a,b]\A,) and &, converge to zero as n—oo,
then

1) f.(x) converges to a finite function f(x) almost everywhere

on [a,b], precisely G (oﬁ Am).
m=0\m=n
2) the integrals Sbf,,(x)dx converges to a finite limit.

Proof. Let x¢ ﬁ A,, then for >0, there is an n, such that

€,<¢ and m,>n, and we have |f,(x)—f.(®)<e,<e for every
m' >m>n,, since f,. € V,(f,) and xeA4,. By Lemma 1, mes(4,)

:mes(mE\”Am) hence (1) follows. For every m>n, ’Sb( Su(®) — fu())da

<e, results from f,, € V,(f,). This proves (2).
Corollary 1. When u: {V,(f.)} is a fundamental sequence, f,(x)

converges to a finite function f(x) a.e. and Sb fu(@)dx converges to
a finite limit,

We denote, from now onwards, by J(w) the limit function f(x)
and by I(w) the limit value lim Sb Sa(@)de.

n—oo

Lemma 3. Let u:{V(A4,,¢,; f.)} be a monotone decreasing se-
quence for which mes([a,b\A,) and ¢, converge to zero as n—oo,
and put flx)=lim f,(x) a.e., then

1) | f@)—fu(@)|<e, for all z€ N Ay,

2) kmes{x; | f(x)— f,,(w)|>k}ge:?or each k>0,
3) ”b[ F@)— fu(@)Jtde| <e,  for each k>0.

Proof. 1) and 3) are easily seen from Lemma 2. As to 2),
since, if we put
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B, ={a; | fu®)—fu(@)|>k for all m'>m},
B= 0, Bu A= U (1 4s),
then ANE={;|f@)—fu@)|>k} and E,CE,., we have kmes
{x; | f&) — fu(@)| >k} =k mes (ENA)= }:{E k mes (E,, N A)< lim % mes

{@; [ fu()— fu(@)] >k} < 6.

Lemma 4. Let u:{V(A,,¢,; f.)} and v:{V(B,, N; 9.)} be two
monotone decreasing sequences for which mes ([a,b]\4,), mes
([a, b]\B,), ¢, and 7, converge to zero as n—oo and u>v. Put

f@)= lim f£,(2) a.e., 9(x)= lim g,() a.e..

Then we have
1) f@)=g() a.e.,
b b
2) limg Salx)da= limS g.(x)da.
Proof. Since u>v, for each =, there is an m such that
Vu(fu)2 Vau(gu), so that by Lemma 1, mes (4,\B,)=0and | g,() — f.(2)|

<e, for all xe A,. By Lemma 3, |f(x)—f.(x)<e, for almost all
xecA, and |g(x)—g.(@)|<n, for almost all xeB,. Therefore (1)

follows. We have l(b( Sful@)— gm(ac))dw‘<e,,, since g, ¢ V.(f.), and so

we have 2) by Lemma 2,
Corollary 2. When u and v are two fundamental sequences
suweh that w>v, we have Jw)=J®) a.e. and I(w)=I(v).
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