No. 4]

45. On Potential Kernels Satisfying the Complete Maximum Principle

By Ryōji Kondō

Department of Mathematics, Shizuoka University, Shizuoka

(Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1968)

Let (E, \mathcal{E}) be a measurable space and V a proper kernel on (E, \mathcal{E}) which satisfies the complete maximum principle. It is known that if V1 is bounded, there then exists a sub-Markov resolvent $(V_p)_{p>0}$ such that

$$(1) V = \lim_{p \to \infty} V_p$$

(see [4, p. 206]). On the other hand, if V1 is unbounded, there is such a kernel V for which the condition (1) is never satisfied by any sub-Markov resolvent $(V_p)_{p>0}$ (for an example, see also [4, p. 206]).

In this note we shall give a *sufficient* condition under which the kernel V can be expressed in the form (1) by a sub-Markov resolvent $(V_p)_{p>0}$. The condition is stated in terms of the pseudo-réduite and it is similar to that of Theorem 7 of Meyer [5].*' Our result contains Theorem II of Lion [3] as a special case.

1. Preliminary results. Throughout this note notations and terminology are taken from Meyer [4]. We will omit the definitions of a proper [resp. sub-Markov] kernel, a sub-Markov resolvent (we shall call it simply a resolvent) and a supermedian function with respect to a resolvent. A subset of E and a function on E are always assumed to be \mathcal{E} -measurable, so we will omit the phrase " \mathcal{E} -measurable".

Let A be a subset of E and h a supermedian function with respect to a resolvent $(V_p)_{p>0}$. Then the collection of supermedian functions that dominate h on A has the smallest element, which will be called the *pseudo-réduite* of h on A and denoted by H_Ah [4, p. 200]. A resolvent $(V_p)_{p>0}$ is said to be *closed* if the kernel V_0 defined by $V_0 = \lim_{p \to 0} V_p$ is proper. If $(V_p)_{p>0}$ is closed and $V_0 f$ $(f \ge 0)$ is finite, then the function $V_0 f$ is supermedian with respect to $(V_p)_{p>0}$. If the support of f is contained in A, then $H_A V_0 f = V_0 f$ [5, p. 231].

Let U be any proper kernel on (E, \mathcal{E}) . A non-negative function

^{*)} Meyer discussed the following problem and gave a necessary and sufficient condition for the kernel U. "When is the proper kernel U generated by a sub-Markov kernel P in the sense $U = \sum_{n=0}^{\infty} P^{n}$ ". This is closely connected to our problem.

h on *E* is said to be *U*-quasi-excessive if, whenever U|f| is bounded, the relation $h \ge Uf$ on the set $\{f > 0\}$ implies $h \ge Uf$ everywhere. If $(V_p)_{p>0}$ is closed, then a non-negative function *h* is supermedian with respect to $(V_p)_{p>0}$ when and only when it is V_0 -quasi-excessive [5, p. 230].

2. The complete maximum principle. We shall say that a proper kernel V on (E, \mathcal{E}) satisfies the complete maximum principle if it has the following property:

(C. M. P.) If a constant $a \ge 0$ and if V|f| is finite, the relation $Vf \le a$ on the set $\{f > 0\}$ implies $Vf \le a$ everywhere.

Let V a proper kernel satisfying (C. M. P.) and u, a function such that u(x) > 0 for all $x \in E$ and Vu is bounded (such a function always exists since V is proper). Then the kernel \vec{V} defined by $\vec{V}(x, A) = \int_{A} V(x, dy)u(y)$ satisfies also (C. M. P.). Since $\vec{V}1$ is bounded, there exists a closed resolvent $(\vec{V}_p)_{p>0}$ such that $\vec{V} = \vec{V}_0$. A function h is V-quasi-excessive if and only if it is \vec{V} -quasi-excessive. Therefore, for any V-quasi-excessive function h and any subset A, we can define the pseudo-réduite H_Ah . From (C. M. P.) it follows that a potential Vf of non-negative function f is V-quasi-excessive, so that the pseudo-réduite H_AVf is well defined. Put $G^p = I + pV$ for each p > 0.

Lemma 1. If h is V-quasi-excessive and if $G^p|f|$ is finite, then the relation $G^p f \leq h$ on the set $\{f > 0\}$ implies $G^p f \leq h - f^-$ everywhere, where $f^- = \sup(0, -f)$.

Proof. On the set $\{f>0\}$, we have $pVf \leq G^p f \leq h$. However, since h is V-quasi-excessive, $pVf \leq h$ everywhere. Hence $pVf - f^- \leq h - f^-$ everywhere, which implies $G^p f \leq h - f^-$ on the set $\{f \leq 0\}$. Thus $G^p f \leq h - f^-$ everywhere.

Corollary 1. Any V-quasi-excessive function is G^{p} -quasi-excessive.

Corollary 2. G^p satisfies the reinforced maximum principle as follows:

(R. M. P.) If a constant $a \ge 0$ and if $G^p |f|$ is finite, the relation $G^p f \le a$ on the set $\{f > 0\}$ implies $G^p f \le a - f^-$ everywhere.

Since condition (R. M. P) implies condition (C. M. P), for any G^{p} -quasi-excessive function h and a subset A, we can define the pseudo-réduite $H_{a}^{p}h$ of h on A with respect to G^{p} . If h is V-quasi-excessive, then $H_{a}^{p}h \leq H_{a}h$, for $H_{a}h$ is a G^{p} -quasi-excessive function that dominates h on A. From (R. M. P.) it follows that if $0 \leq G^{p}f \leq 1$, then $0 \leq G^{p}f - f \leq 1$. Therefore, if $G^{p}f = 0$, then f = 0 and if $f \geq 0$, then $G^{p}f \geq f$. Condition (R. M. P.) is equivalent to condition (R. M.) of Meyer [5] and hence, for any bounded G^{p} -quasi-excessive function h, we can find a sequence of non-negative functions $(g_{n})_{n\geq 1}$ such that

No. 4]

 $G^{p}g_{n}$ increases to h as $n \rightarrow \infty$ [5, p. 235].

3. Construction of the resolvent. Let V be a proper kernel satisfying (C. M. P.). Let **B** be the Banach space of all real valued, bounded functions with the uniform norm and B_0 , the collection of f such that both f and Vf are in **B**. Further B^+ [resp. B_0^+] denotes the cone of all non-negative functions of **B** [resp. B_0]. In this section we assume that V satisfies the following additional condition:

(N) For any function $f \in B_0^+$ and any increasing sequence of subsets $(A_n)_{n\geq 1}$ with $\bigcup_{n\geq 1}A_n=E$,

$$\lim_{E\setminus A_n} H_{E\setminus A_n} V f = 0.$$

The next lemma is a slight modification of Lemma 9 of Meyer [5].

Lemma 2. If a sequence of non-negative functions $(g_n)_{n\geq 1}$ converges to a function g and if there is a function $f \in \mathbf{B}_0^+$ such that $G^pg_n \leq Vf$ for all $n\geq 1$, then G^pg_n converges to G^pg as $n\to\infty$.

Proof. Take a function v in B_0^+ , positive everywhere, and put $A_m = \{Vf \leq mv\}$ for each positive integer m. Then the sequence $(A_m)_{m \geq 1}$ is increasing to E. Since $g_n \leq G^p g_n \leq Vf$, we have $\{g_n > mv\} \subseteq B_m = E \setminus A_m$. Hence, for all $m, n \geq 1$,

 $\int_{\substack{\{g_n > mv\} \\ = G^p(I_{B_m}g_n)(x) = H_{B_m}^p G^p(I_{B_m}g_n)(x) \leq H_{B_m}^p Vf(x) \leq H_{B_m}Vf, }$

where I_A denotes the indicator of a set A. Since $H_{B_m}Vf$ converges to 0 when $m \to \infty$, the sequence of non-negative functions $(g_n/v)_{n\geq 1}$ is uniformly integrable with respect to each bounded measure $G^p(x, dy)v(y)$. Therefore, G^pg_n converges to G^pg when $n \to \infty$.

Lemma 3. There is a family of mappings $(V_p)_{p>0}$ from B_0^+ to B_0^+ such that (a) $(I+pV)V_pf=Vf$, (b) if $f \leq 1$, then $pV_pf \leq 1$, (c) $V_p(af+bg)$ $=aV_pf+bV_pg$, where a and b are non-negative constants, and (d) $V_pf-V_qf+(p-q)V_pV_qf=0$.

Proof. Let $f \in \mathbf{B}_0^+$. Noting that Vf is G^p -quasi-excessive, choose a sequence of non-negative functions $(g_n)_{n\geq 1}$ such that G^pg_n increases to Vf when $n\to\infty$. Since the sequence $G^pg_n-g_n$ is increasing and $G^pg_n-g_n\leq Vf$, $g_n=G^pg_n-(G^pg_n-g_n)$ converges to a function g as $n\to\infty$. Define $V_pf=g$. By Lemma 2, we have $G^pV_pf=Vf$, proving $V_pf\in \mathbf{B}_0^+$ and (a). We should note that V_pf is independent of the choice of $(g_n)_{n\geq 1}$, because I+pV satisfies (R. M. P.). Next, let $f\leq 1$, then

 $1 \ge f = (I + pV)f - pVf = (I + pV)(f - pV_pf).$ Noting that I + pV satisfies (R. M. P.), we have

$$1 \ge (I + pV)(f - pV_p f) - (f - pV_p f) = pV_p f,$$

proving (b). Assertion (c) is evident. Finally, let p, q > 0, and $f \in B_0^+$, then

R. Kondō

[Vol. 44,

$$(I+pV)(V_pf-V_qf) = (I+pV)V_pf - (I+qV)V_qf + (p-q)VV_qf = (p-q)VV_qf = (I+pV)((q-p)V_pV_qf).$$

Thus, using (R. M. P.) again, we have $V_p f - V_q f = (q-p)V_p V_q f$. Therefore the lemma was proved.

For each $f \in B_0$, define $V_p f = V_p f^+ - V_p f^-$, where $f^+ = \sup(0, f)$. Noting that $V_p f \leq V f$ for all $f \in B_0^+$ and that V is a kernel on (E, \mathcal{C}) , we can easily verify that, for each $x \in E$, the linear functional: $f \rightarrow V_p f(x)$ defined on B_0 has all the properties of Daniell integral. Therefore there is a measure $V_p(x, \cdot)$ on E for which any function f in B_0 is measurable and

$$V_p f(x) = \int_E V_p(x, dy) f(y).$$

Since any function in B^+ is obtained as the limit of an increasing sequence of functions in B_0^+ , $V_p(x, \cdot)$ is a measure on (E, \mathcal{E}) . Then we may consider $(V_p)_{p>0}$ as a sub-Markov resolvent.

Theorem. Let V be a proper kernel which satisfies the complete maximum principle. Under condition (N), there is a closed sub-Markov resolvent $(V_p)_{p>0}$ such that $V=V_0$. Such a resolvent is unique.

Proof. The uniqueness of such a resolvent is proved in [4, p. 205]. Let $(V_p)_{p>0}$ be a resolvent constructed above. $V_p f \leq V f$ for all $f \in B_0^+$ and p > 0, then $V_0 f \leq V f$ for all $f \in B_0^+$, so that the resolvent is closed. So we have only to prove $V = V_0$. For this purpose it is sufficient that we prove $V f = V_0 f$ for all $f \in B_0^+$. Let $f \in B_0^+$ and p > 0. From (a) of Lemma 3, we have $(I + pV)pV_p f = pVf$, $(I + pV)(pV_p)^2 f = pV(pV_p)f$, \cdots , $(I + pV)(pV_p)^{n+1}f = pV(pV_p)^n f$, \cdots . Therefore

$$\sum_{k=1}^{n} (pV_p)^k f + pV(pV_p)^n f = pVf \quad \text{for all} \quad n \ge 1.$$

Hence, $V(pV_p)^n f \leq V f$ and $\lim_n (pV_p)^n f = 0$, which implies $\lim_n V(pV_p)^n f = 0$ by Lemma 2. Therefore

(2)
$$\sum_{k=1}^{\infty} (pV_p)^k f = pVf.$$

On the other hand, since the resolvent $(V_p)_{p>0}$ is closed, the left hand side of (2) is equal to pV_0f [4, p. 193] and so $Vf=V_0f$. Thus the theorem is proved.

References

- J. Deny: Elements de théorie du potentiel par rapport à un noyau de Hunt. Sem. de Theo. du Potentiel, par N. Brelot, G. Choquet et J. Deny (1960-61).
- [2] G. A. Hunt: Markoff processes and potentials. II. Illinois J. Math., 1, 316-369 (1957).

196

No. 4]

- [3] G. Lion: Familles d'opérateurs et frontière en théorie du potentiel. Ann. Inst. Fourier, Grenoble, 16(2), 389-453 (1966).
- [4] P. A. Meyer: Probability and Potentials. Blaisdell Publishing Company (1966).
- [5] ——: Caractérisation des noyaux potentiels des semi-groupes discrets. Ann. Inst. Fourier, Grenoble, 16(2), 225-240 (1966).