107. σ-Spaces and Closed Mappings. II

By Akihiro OKUYAMA Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

1. This is the continuation of our previous paper [6] in which we proved the following:

Theorem. Let X be a normal $T_1 \sigma$ -space and f a closed mapping¹ of X onto a topological space Y. Then Y is a normal $T_1 \sigma$ -space such that the set $\{y | \partial f^{-1}(y) \text{ is not countably compact}\}$ is σ -discrete in Y, where $\partial f^{-1}(y)$ denotes the boundary of $f^{-1}(y)$.

The purpose of this paper is to consider some applications of the above theorem to σ_0 spaces and to prove three theorems below. We shall say that a topological space X is *countable-dimensional* or σ_0 if it is the sum of X_i , $i=1, 2, \cdots$, with dim $X_i \leq 0$, where dim X_i denotes the covering dimension of X_i defined by means of finite open coverings, and that X is *uncountable-dimensional* if it is not σ_0 .

Theorem 1. Let X be a collectionwise normal T_1 σ -space and f a closed mapping of X onto a topological space Y such that $\partial f^{-1}(y)$ is countable for each $y \in Y$ or discrete for each $y \in Y$. Then Y is a countable sum of subspaces, each of which is homeomorphic to a subspace of X.

Theorem 2. Let X be a collectionwise normal σ_0 and $T_1 \sigma$ -space and f a closed mapping of X onto an uncountable-dimensional space Y. Then Y contains an uncountable-dimensional subset N of Y such that $\partial f^{-1}(y)$ is uncountable for each $y \in Y$.

Theorem 3. Let X be a collectionwise normal σ_0 and $T_1 \sigma$ -space and f a closed mapping of X onto an uncountable-dimensional space Y. Then Y contains an uncountable-dimensional subset Y such that $\partial f^{-1}(y)$ is dense-in-itself, non-empty and compact for each $y \in Y$.

The first two theorems are generalizations of the results obtained by A. Arhangel'skii [2] which were proved in the case of spaces with countable nets and the last one is a generalization of K. Nagami's theorem [4] which was proved in the case of metric space, all of which concerned with a problem of P. Alexandroff [1] on the effect of closed mappings on countable-dimensional spaces.

2. To prove our results we need a few preliminaries.

Lemma 1. Let F be a collection of subsets of a topological space

¹⁾ All mappings in this paper are continuous.

 σ -Spaces and

ete collection of subsets of X such th

X and \mathfrak{H} a σ -discrete collection of subsets of X such that each element of \mathfrak{H} intersects with at most countable number of elements of \mathfrak{H} . Then $\mathfrak{H} \wedge \mathfrak{H} = \{F \cap H | F \in \mathfrak{H}, H \in \mathfrak{H}\}$ is σ -discrete in X.

Proof. Let $\mathfrak{F} = \{F_{\alpha} | \alpha \in \mathfrak{A}\}$ be the given collection and $\mathfrak{F} = \bigcup_{i=1}^{\omega} \mathfrak{F}_i$, $\mathfrak{F}_i = \{H_{\lambda} | \lambda \in \Lambda_i\}$ the given discrete collection for $i = 1, 2, \cdots$, and let $\mathfrak{A}_{\lambda} = \{\alpha | \alpha \in \mathfrak{A}, F_{\alpha} \cap H_{\lambda} \neq \phi\} = \{\alpha_1^{\lambda}, \alpha_2^{\lambda}, \cdots\}$

for each $\lambda \in \bigcup_{i=1}^{\infty} \Lambda_i$. Besides, let us put

$$K_{\alpha\lambda} = F_{\alpha} \cap H_{\lambda}$$
 for each $\alpha \in \mathfrak{A}$ and $\lambda \in \bigcup_{i=1}^{\infty} A_i$,

and

$$\Re_{jk} = \{K_{\alpha\lambda} | \alpha = \alpha_j^{\lambda}, \lambda \in \Lambda_k\} \text{ for } j, k = 1, 2, \cdots.$$

Then it is easily seen that \Re_{jk} is discrete in X for each j, k, and $\Im \land \Im$ = $\bigcup_{j,k=1}^{\infty} \Re_{jk}$. This completes the proof.

Proposition. For a collectionwise normal T_1 space X the following properties are equivalent:

(i) X has a σ -locally finite net,

(ii) X has a σ -discrete net.

Proof. Since it is clearly (ii) \rightarrow (i), we prove (i) \rightarrow (ii), only. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -locally finite net for X. Since a collectionwise normal T_1 space with a σ -locally finite net is paracompact (cf. [5]), there exists a σ -discrete (open) covering \mathfrak{G} of X such that each element of \mathfrak{G} intersects with at most finite number of elements of \mathfrak{B}_n for $n=1, 2, \cdots$ (cf. [7]). By Lemma 1 $\mathfrak{C}_n = \mathfrak{B}_n \wedge \mathfrak{G}_n$ is a σ -discrete collection in X for $n=1, 2, \cdots$, and $\mathfrak{C} = \bigcup_{n=1}^{\infty} \mathfrak{C}_n$ is also σ -discrete in X. Since \mathfrak{B} is a net for X, \mathfrak{C} is a net for X, too. This completes our proof.

Now we shall prove the following two lemmas in an analogous way as the case of metric spaces by K. Nagami [4].

Lemma 2. Let X be a collectionwise normal T_1 space and \mathfrak{B} a σ -locally finite net for X such that each $B \in \mathfrak{B}$ is a σ_0 space. Then X is a σ_0 space.

Proof. By Proposition we can assume that $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ is a σ -discrete net for X such that each $B \in \mathfrak{B}$ is σ_0 . Hence $B_n^* = \bigcup \{B \mid B \in \mathfrak{B}_n\}$ is also σ_0 and $X = \bigcup_{n=1}^{\infty} B_n^*$ is σ_0 , too.

Lemma 3. Let X and Y be collectionwise normal $T_1 \sigma$ -spaces and f a closed mapping of X onto Y such that $f^{-1}(y)$ is compact and is not dense-in-itself for each $y \in Y$. If X is σ_0 , then Y is σ_0 , too.

Proof. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -discrete net for X (see Proposition)

where $\mathfrak{B}_n = \{B_\alpha | \alpha \in \mathfrak{A}_n\}$ for $n = 1, 2, \cdots$. Since X is regular, we can assume that each $B \in \mathfrak{B}$ is closed in X. Since X is σ_0 , each $B \in \mathfrak{B}$ is σ_0 . By the assumption $f^{-1}(y)$ contains an isolated point x(y). Since \mathfrak{B} is a net for X, there exist an n and an $\alpha(y)$ of $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$ such that $B_{\alpha(y)} \cap f^{-1}(y)$ $= \{x(y)\}$. Let

$$Y_{\alpha} = \{y \mid \alpha(y) = \alpha\}$$
 for each $\alpha \in \bigcup_{n=1}^{\infty} \mathfrak{A}_n$

and

 $Y_n = \bigcup \{Y_{\alpha} | \alpha \in \mathfrak{A}_n\}$ for $n = 1, 2, \cdots$.

Then $Y = \bigcup_{n=1}^{\infty} Y_n$. Let

$$X_{a} = \{x(y) | y \in Y_{a}\}$$
 for each $\alpha \in \bigcup_{n=1}^{\infty} \mathfrak{A}_{n}$

and

 $X_n = \{x(y) | y \in Y_n\}$ for each $n = 1, 2, \cdots$.

Then $f(X_{\alpha}) = Y_{\alpha}$ and $f(X_n) = Y_n$. Since $f | B_{\alpha}$ is closed and $B_{\alpha} \cap f^{-1}(Y_{\alpha}) = X_{\alpha}$, f maps X_{α} onto Y_{α} homeomorphically. Since X is perfectly normal (cf. [5]) and σ_0 , each X_{α} is σ_0 (cf. [3]), consequently, each Y_{α} is σ_0 . Since f is perfect,²⁾ $f(\mathfrak{V})$ is a σ -locally finite net for Y (cf. [5]). Hence, if we put $\mathfrak{C}_n = \{Y_{\alpha} | \alpha \in \mathfrak{A}_n\}$ and $\mathfrak{C} = \bigcup_{n=1}^{\infty} \mathfrak{C}_n$, then \mathfrak{C} is a σ -locally finite net for Y such that each $C \in \mathfrak{C}$ is σ_0 . Therefore, Y is also a σ_0 space by Lemma 2.

3. Proof of Theorem 1. Let Y_1 be the aggregate of all points y in Y such that $\partial f^{-1}(y)$ is empty, Y_2 the aggregate of all points y in Y such that $\partial f^{-1}(y)$ is compact and non-empty and Y_3 the aggregate of all points y in Y such that $\partial f^{-1}(y)$ is not compact. Then we have $Y = Y_1 \cup Y_2 \cup Y_3$.

For each point $y \in Y_1$ select a point x(y) of $f^{-1}(y)$ and let X_1 be the aggregate of all points x(y) in X. Then $f(X_1) = Y_1$. Since $f | f^{-1}(Y_1)$ is closed and X_1 is closed in $f^{-1}(Y_1)$, f maps X_1 onto Y_1 homeomorphically.

Since $\partial f^{-1}(y)$ is non-empty, compact σ -subspace of X for each $y \in Y_2$, it is a compact, metrizable subspace (cf. [5]) and, consequently, it is not dense-in-itself by the assumption of f. And $X_2 = \bigcup \{\partial f^{-1}(y) | y \in Y_2\}$ is a σ -space (cf. [5]) and $f | X_2$ is a perfect mapping²) of X_2 onto Y_2 . Hence, as in the proof of Lemma 3 we can see that Y_2 is the countable sum of subspaces, each of which is homeomorphic to a subspace of X.

Finally, Y_3 is σ -discrete in Y by Theorem. Therefore, Y_3 is

²⁾ We shall say that f is *perfect* if it is a closed mapping such that $f^{-1}(y)$ is compact for each $y \in Y$.

a countable sum of subspaces, each of which is homeomorphic to a subspace of X. This completes the proof.

Proof of Theorem 2. Let $Y_1 = Y - N$, $X_1 = f^{-1}(Y_1)$ and $f_1 = f | X_1$. Since X is hereditarily paracompact (cf. [5]), X_1 is also a collectionwise normal σ_0 subspace (cf. [3]). By Theorem 1 Y_1 is the countable sum of subspaces of Y, each of which is homeomorphic to a subspace of X. Since X_1 is a σ_0 space, Y_1 is a σ_0 space, too. Consequently, N must be uncountable-dimensional, completing the proof.

Proof of Theorem 3. Let us put Y_1 , Y_2 , Y_3 , X_1 , and X_2 as in Proof of Theorem 1; that is, Y_1 is the aggregate of all points y in Ysuch that $\partial f^{-1}(y)$ is empty, Y_2 the aggregate of all point y in Y such that $\partial f^{-1}(y)$ is compact and not dense-in-itself, and Y_3 is the aggregate of all points y in Y such that $\partial f^{-1}(y)$ is not compact. Then we have $Y_0 = Y - Y_1 \cup Y_2 \cup Y_3$.

Since f_1 maps X_1 onto Y_1 homeomorphically, we have dim $Y_1 = \dim X_1 \le 0$ (cf. [3]) and $f_2 = f | X_2$ is a closed mapping of X_2 onto Y_2 such that $f_2^{-1}(y) = \partial f^{-1}(y)$ is compact and not dense-in-itself for each $y \in Y_2$. Since X_2 is σ_0 , Y_2 is also σ_0 by Lemma 3. Finally, Y_3 is σ -discrete in Y by Theorem, therefore, σ_0 . By the assumption that Y is not $\sigma_0 Y_0$ must be uncountable-dimensional. This completes the proof.

References

- P. S. Alexandroff: Some results in the theory of topological spaces obtained the last twenty-five years. Uspehi Math. Nauk, 15(92), 25-95 (1960). (Russian Math. Surveys, 15, 23-83 (1960)).
- [2] A. V. Arhangel'skii: On closed mappings, bicompact sets and a problem of P. S. Alexandroff. Math. Sb., 96, 13-34 (1966).
- [3] C. H. Dowker: Local dimension of normal spaces. Quat. J. Math., 6, 101-120 (1955).
- [4] K. Nagami: Closed images of countable-dimensional spaces. J. Math. Soc., Japan, 19, 457-459 (1967).
- [5] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 9, 60-78 (1967).
- [6] —: σ-spaces and closed mappings. I. Proc. Japan Acad., 44, 472-477 (1968).
- [7] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977–982 (1948).