106. σ -Spaces and Closed Mappings. I

By Akihiro OKUYAMA Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

1. Introduction. In our previous paper [7] we have introduced the notion of a σ -locally finite net as a generalization of a countable net (cf. [2], [5]) and studied the spaces with σ -locally finite nets as a class of a topological spaces which contains all metric spaces.

Definition. A collection \mathfrak{B} of subsets of a topological space X is said to be a *net for* X if the following condition is satisfied :

For every point x of X and every open neighborhood U of x there exists an element B of \mathfrak{B} with $x \in B \subset U$.

A collection \mathfrak{B} of subsets of X is said to be a σ -locally finite net if it is a net and it is a union of a countable number of subcollections which are locally finite in X. We shall say that X is a σ -space if X has a σ -locally finite net (cf. [6]).

The notion of net was introduced and discussed by A. Arhangel'skii [1]¹⁾ and several results were obtained by him in [1], [2] and, also, by E. Michael [4] in the case of countable nets.

The purpose of this paper is to study the images of σ -spaces under closed mappings²⁾ and to prove the following two theorems.

Theorem 1. Let f be a closed mapping of a normal T_1 σ -space X onto a topological space Y. Then the set $\{y | \partial f^{-1}(y) \text{ is not countably compact}\}$ is a σ -discrete subset of Y; that is, it is a countable union of discrete subsets of Y, where $\partial f^{-1}(y)$ denotes the boundary of $f^{-1}(y)$ for each $y \in Y$.

Theorem 2. Let f be a closed mapping of a normal T_1 σ -space X onto a topological space Y. Then Y is a σ -space, too.

As regards Theorem 1 N. Lašnev [3] proved it in the case of metric space. He proved also, in another paper [4], the following theorem:

In order that a T_1 space X be a closed image of a metric space, it is necessary and sufficient that X is a Fréchet-Urysohn space³⁾ with

¹⁾ This fact was pointed out to us by Professor A. Arhangel'skii. We express our thanks to his advice.

²⁾ All mappings in this paper are continuous.

³⁾ X is a Fréchet-Urysohn space if, for every subset M of X and $x_0 \in \overline{M}$, there exists a sequence $\{x_n \mid n=1, 2, \cdots\}$ of points of M, converging to x_0 .

an almost refining sequence of hereditarily conservative coverings⁴) comprising a net for X.

By Theorem 2 we can slightly strengthen his result as below:

Corollary. In order that a T_1 space X be a closed image of a metric space, it is necessary and sufficient that X is a Fréchet-Urysohn space with an almost refining sequence of locally finite coverings comprising a net for X.

In § 2 we shall give the related observations which will be needed for the next section and prove our theorems in § 3.

2. Preliminaries. Lemma 1. If X is a σ -space, then X has a σ -locally finite net $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ satisfying the following three conditions: (a) \mathfrak{B}_n is a locally finite covering of X for $n=1, 2, \cdots$,

(b) $\mathfrak{B}_n \subset \mathfrak{B}_{n+1}$ for $n=1, 2, \cdots$,

(c) \mathfrak{B}_n is closed under finite intersections; that is, \mathfrak{B}_n contains any of intersections of finite members of \mathfrak{B}_n for $n=1, 2, \cdots$.

Proof. Let $\mathfrak{S} = \bigcup_{n=1}^{\infty} \mathfrak{S}_n$ be a given σ -locally finite net for X. Without loss of generality we can assume $X \in \mathfrak{S}_1$. Put $\mathfrak{D}_n = \bigcup_{i \leq n} \mathfrak{S}_i$ and let \mathfrak{B}_n be the collection of all intersections of finite members of \mathfrak{D}_n for n=1,2,.... Then it is easily seen that $\mathfrak{B} = \bigcup_{n=1}^{\mathcal{O}} \mathfrak{B}_n$ is a σ -locally finite net for X satisfying all conditions.

Definition. Let x be a point of a topological space X and $\{S_n(x) | n = 1, 2, \dots\}$ a sequence of subsets of X with $x \in S_n(x)$ for $n=1, 2, \cdots$. Then we shall say that $\{S_n(x) \mid n=1, 2, \cdots\}$ is a strict xsequence if any sequence $\{x_n | n = 1, 2, \dots\}$ with $x_n \in S_n(x)$ converges to The notion of x-sequence was introduced by A. Arhangel'skii [2] x. in the sense that any sequence $\{x_n | n=1, 2, \dots\}$ has an accumulation point in X.

Proposition 1. Let X be a σ -space. Then X has a σ -locally finite net \mathfrak{B} such that for each point $x \in X$ there exists a subcollection $\{S_n(x) | n = 1, 2, \dots\}$ of \mathfrak{B} which is a strict x-sequence.

Proof. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -locally finite net for X satisfying all conditions in Lemma 1. For an arbitrary point $x \in X$ select a minimal

No. 6]

⁴⁾ A system $\{F_{\alpha} \mid \alpha \in \mathfrak{A}\}$ of closed subsets of X is said to be hereditarily conservative if for any subset \mathfrak{A}' of \mathfrak{A} and any system $\{M_{\alpha} \mid \alpha \in \mathfrak{A}'\}$ of closed subsets of X, such that $M_{\alpha} \subset F_{\alpha}$, the set $\bigcup_{\alpha \in A'} M_{\alpha}$ is closed in X. A sequence $\{\mathfrak{B}_i | i=1, 2, \cdots\}$ of closed coverings of X is said to be almost refining if for any point $x_0 \in X$, any system $\{Bi | i=1, 2, \dots\}$, such that $B_i \in \mathfrak{B}_i$ and $x_0 \in B_i$, is either hereditarily conservative, or else forms a net at x_0 .

member $S_n(x)$ of \mathfrak{B}_n containing x for $n=1, 2, \cdots$. The existence of such $S_n(x)$ is assured by (c) of Lemma 1. Since \mathfrak{B} is a net for X, we can see that $\{S_n(x) | n=1, 2, \cdots\}$ is a strict x-sequence. This completes the proof.

Definition. Let x be a point of topological space X and \mathfrak{B}_x a collection of subsets of X with $x \in B$ for each $B \in \mathfrak{B}_x$. Then we shall say that \mathfrak{B}_x is a *local net at* x if, whenever $x \in U$ with U open in X, then $x \in B \subset U$ for some $B \in \mathfrak{B}_x$ (cf. [8]).

From the definition we can obtain the following, immediately.

Proposition 2. Let x be a point of a topological space X and $\{B_n | n=1, 2, \dots\}$ a decreasing sequence of subsets of X which is a local net at x. Then $\{B_n | n=1, 2, \dots\}$ is a strict x-sequence.

Lemma 2. Let \mathfrak{B}' and \mathfrak{C} be nets for T_2 spaces X and Y, respectively, and f a closed mapping of X onto Y. Then the collection $\mathfrak{B} = \{B' \cap f^{-1}(C) | B' \in \mathfrak{B}', C \in \mathfrak{C}\}$ is a net for X having the following property:

If $\bigcap_{i=1}^{k} f(B_{\alpha_{i}})$ is finite subset of Y for $B_{\alpha_{1}}, \dots, B_{\alpha_{k}} \in \mathfrak{B}$, then for each $y \in \bigcap_{i=1}^{k} f(B_{\alpha_{i}})$ there exist $B_{\beta_{1}}, \dots, B_{\beta_{l}}$ in \mathfrak{B} such that $\{y\} = \bigcap_{i=1}^{l} f(B_{\beta_{i}})$.

Proof. It is easily seen that \mathfrak{B} is a net for X. Now let us put

 $\bigcap_{i=1}^{k} f(B_{\alpha_i}) = \{y_1, \cdots, y_m\} \text{ for } B_{\alpha_1}, \cdots, B_{\alpha_k} \in \mathfrak{B}.$

Since Y is a T_2 , space, there exists a disjoint collection $\{V_1, \dots, V_m\}$ of open subsets of Y such that $y_i \in V_i$ for $i=1,\dots,m$. Since \mathcal{C} is a net for Y, there exist C_1,\dots, C_m in \mathcal{C} with $y_i \in C_i \subset U_i$ for $i=1,\dots,m$. Hence, if we put $B_{ij} = f^{-1}(C_i) \cap B_{\alpha_j}$ for $j=1,\dots,k$; $i=1,\dots,m$, then each B_{ij} is a member of \mathfrak{B} with $y_i \in f(B_{ij})$. Accordingly, we have $\bigcap_{j=1}^k f(B_{ij}) = \bigcap_{i=1}^k [C_i \cap f(B_{\alpha_j})] = C_i \cap [\bigcap_{j=1}^k f(B_{\alpha_j})] = \{y_i\}$ for $i=1,\dots,m$.

This completes the proof.

Proposition 3. Let f be a closed mapping of a topological space X onto a topological space Y and F an arbitrary locally finite closed covering of X. Then the set

 $K = \{y \mid \{y\} = \bigcap_{i=1}^{n} f(F_{\alpha_i}) \text{ for some } n \text{ and for some } F_{\alpha_1}, \dots, F_{\alpha_n} \in \mathfrak{F}\}$ is discrete in X.

Proof.⁵⁾ For an arbitrary point $y_0 \in Y$ let

 $V = Y - \bigcup \{ f(F_{\alpha}) \mid F_{\alpha} \in \mathfrak{F}, y_0 \notin f(F_{\alpha}) \}.$

Then V is an open subset of Y containing y_0 by the assumption. Now it is sufficient to show that V contains at most one point of K. If y

⁵⁾ After we have proved this proposition, Professor J. Suzuki pointed out that it may be proved more shortly. Here we do it according to his suggestion.

is a point of $V \cap K$, we can see that $y \in K$ implies $\{y\} = \bigcap_{i=1}^{n} f(F_{\alpha_i})$ for some *n* and for some $F_{\alpha_1}, \dots, F_{\alpha_n} \in \mathfrak{F}$, and that $y \in V$ implies $y_0 \in f(F_{\alpha_i})$ for $i=1, \dots, n$. Hence we have $\{y\} = \bigcap_{i=1}^{n} f(F_{\alpha_i}) \ni y_0$ and, consequently, $y=y_0$. This completes our proof.

3. Proof of Theorems. Proof of Theorem 1. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -locally finite net for X satisfying all conditions in Lemma 1 and $\mathfrak{S}_n = f(\mathfrak{B}_n) = \{f(B) | B \in \mathfrak{B}_n\}$ for $n = 1, 2, \cdots$. Then it is easily seen that $\mathfrak{S} = \bigcup_{n=1}^{\infty} \mathfrak{S}_n$ is a net Y. Furthermore, since X is a regular T_1 space, we can assume that each $B \in \mathfrak{B}$ is closed in X.

Now, let us put

 $Y_n = \{y | \{y\} = \bigcap_{i=1}^k f(B_{\alpha_i}) \text{ for some } k \text{ and for some } B_{\alpha_1}, \dots, B_{\alpha_k} \in \mathfrak{B}_n\}$ for $n = 1, 2, \dots$. Then each Y_n is discrete in Y by Proposition 3. Accordingly, it is sufficient to show that for each $y \in Y - \bigcup_{n=1}^{\infty} Y_n$, $\partial f^{-1}(y)$ is countably compact.

On the contrary, let us assume that $\partial f^{-1}(y_0)$ is not countably compact for some $y_0 \in Y - \bigcup_{n=1}^{\infty} Y_n$. Then $\partial f^{-1}(y_0)$ contains an infinite and discrete subset $\{x_n | n=1, 2, \dots\}$ of X. Since X is a normal T_1 space, there exists a discrete collection $\{U_n | n=1, 2, \dots\}$ of open subsets of X with $x_n \in U_n$ for $n=1, 2, \cdots$. For each n, let $B_i(x_n)$ be the minimal member in \mathfrak{B}_i with $x_n \in B_i(x_n)$. Then it is easily seen that each sequence $\{B_i(x_n) | i=1, 2, \dots\}$ is a decreasing, local net at x_n and each sequence $\{f(B_i(x_n) | i = 1, 2, \dots\}$ is a decreasing, local net at y_0 , too. Hence we can choose an l_n with $x_n \in B_{l_n}(x_n) \subset U_n$ for each n and, without loss of generality, we can assume that $l_1 < l_2 < \cdots$. If we put C_k $= \bigcap_{n=1}^{k} f B_{l_k}(x_n)$ for each k, then $\{C_k | k = 1, 2, \dots\}$ is a decreasing sequence in Y, each of which contains y_0 and, in addition, it is a local net at y_0 . Therefore, it is a strict y_0 -sequence by Proposition 2. Since y_0 is not in $\bigcup Y_n$, each C_k is an infinite subset of Y by Lemma 2. Accordingly, we can select a point p_n in $B_{l_n}(x_n)$ for each n such that $\{f(p_n) \mid n\}$ $=1, 2, \dots$ is an infinite subset of Y with $f(p_n) \in C_n$ and $f(p_n) \neq y_0$ for each n. Consequently, we obtain a sequence $\{f(p_n) | n=1, 2, \dots\}$ in Y converging to y_0 . On the other hand, since $\{U_n | n=1, 2, \dots\}$ is discrete, $\{p_n | n=1, 2, \dots\}$ is also discrete in X and, since f is a closed mapping, $\{f(p_n) | n = 1, 2, \dots\}$ must be closed in Y. This is a contradiction. The proof is completed.

Proof of Theorem 2. Let Q be the aggregate of all points y of

[Vol. 44,

Y with $\partial f^{-1}(y) = \phi$. For each y in Q select a point x(y) from $f^{-1}(y)$. Let

$$P = \{x(y) \mid y \in Q\} \cup [\cup \{\partial f^{-1}(y) \mid y \notin Q\}].$$

Then P is closed in X. Since P has also a σ -locally finite net (cf. [7]) and f | P is a closed mapping onto Y, it is sufficient to prove our Theorem in the case of X=P. Therefore, without loss of generality, we can assume that $\partial f^{-1}(y) = f^{-1}(y)$ for each $y \in Y$ with $\partial f^{-1}(y) \neq \phi$.

Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -locally finite net for X satisfying all conditions in Lemma 1. In addition, since X is regular, each member of \mathfrak{B} is a closed subset of X. Let

 $Y_n = \{y \mid f^{-1}(y) \cap B_{\alpha} = \phi \text{ for all but finite } B_{\alpha} \text{ in } \mathfrak{B}_n\}$ for each n. Then each Y_n is open in Y. That is, for an arbitrary $y_0 \in Y_n$ $V = Y - \bigcup \{f(B_{\alpha}) \mid B_{\alpha} \in \mathfrak{B}_n, y_0 \notin f(B_{\alpha})\}$ is an open subset of Y containing y_0 , since \mathfrak{B}_n is a locally finite closed covering of X and f is a closed mapping. Furthermore, if y is in V, we have that $f^{-1}(y) \cap B_{\alpha} \neq \phi$ implies $f^{-1}(y_0) \cap B_{\alpha} \neq \phi$ for $B_{\alpha} \in \mathfrak{B}_n$. This shows that V is contained in Y_n and, certainly, Y_n is open in Y.

Since X is perfectly normal (cf. [7]), Y is so, too. Hence, for each n we can put $Y'_n = Y - Y_n = \bigcap_{i=1}^{\infty} G_{ni}$ with decreasing sequence $\{G_{ni} | i=1, 2, \cdots\}$ of open subsets of Y.

Now, let us put

 $\mathfrak{C}_{ni} = \{f(B_a) - G_{ni} | B_a \in \mathfrak{B}_n\} \text{ for } i=1, 2, \cdots; n=1, 2, \cdots,$

and show that each \mathfrak{S}_{ni} is locally finite in Y. Let y be an arbitrary point of Y. If y is in G_{ni} , \mathfrak{S}_{ni} is clearly locally finite at y. If y is not in G_{ni} , y must be in Y_n . By the construction of Y_n y is contained in only finite members of $f(\mathfrak{B}_n) = \{f(B_\alpha) | B_\alpha \in \mathfrak{B}_n\}$, in other words, the last collection is point-finite at y and, moreover, it is closure-preserving⁶⁾ in Y. Hence $f(\mathfrak{B}_n)$ is locally finite at y and, consequently, \mathfrak{C}_{ni} is locally finite at y.

Finally, let us put

 $Y' \!=\! \{ y \,|\, f^{\,-\!\!\!\!\!1}(y) \text{ is not countably compact} \}$ and show that

$$\mathfrak{C} = \bigcup_{i,n=1}^{\infty} \mathfrak{C}_{ni} \cup \{\{y\} \mid y \in Y'\}$$

is a σ -locally finite net for Y. Since Y' is σ -discrete in Y by Theorem 1 and each \mathfrak{C}_{ni} is locally finite in Y, it remains only to prove that \mathfrak{C} is a net for Y. Let y be an arbitrary point of Y and U an arbitrary open subset of Y containing y. Since it is clear for y in Y', we can

⁶⁾ A collection \mathfrak{U} is said to be *closure-preserving* if for any $\mathfrak{V} \subset \mathfrak{U} \cup \overline{\{V \mid V \in \mathfrak{V}\}}$ = $\cap \{\overline{V} \mid V \in \mathfrak{V}\}$. For any locally finite collection \mathfrak{U} in $X f(\mathfrak{U})$ is closure-preserving in Y by the closedness of f.

assume that $f^{-1}(y)$ is countably compact and, consequently, y is in Y_n for $n=1, 2, \cdots$. Since \mathfrak{B} is a net for X, there exist an n and B_{α} in \mathfrak{B}_n with $y \in f(B_{\alpha}) \subset U$. Since y is not in Y', we can choose k such that $y \notin G_{nk}$. Hence we have $y \in f(B_{\alpha}) - G_{nk} \subset U$ and $f(B_{\alpha}) - G_{nk} \in \mathfrak{C}_{nk}$. This shows that \mathfrak{C} is a net for Y. This completes the proof.

References

- A. V. Arhangel'skii: An addition theorem for the weight of spaces lying in bicompacta. Dokl. Akad. Nauk, S. S. S. R., 126, 239-241 (1959).
- [2] —: On closed mappings, bicompact sets and a problem of P. S. Alexandroff. Math. Sb., 69, 13-34 (1966).
- [3] N. Lašnev: Continuous decompositions and closed mappings of metric spaces. Dokl. Akad. Nauk, S. S. S. R., 165, 756 (1965). Soviet Math. Dokl., 6, 1504– 1506 (1965).
- [4] —: Closed images of metric spaces. Dokl. Akad. Nauk, S. S. S. R., 170, No. 3 (1966). Soviet Math. Dokl., 7, 1219–1221 (1966).
- [5] E. Michael: ×0-spaces. J. Math. Mech., 15, 983-1002 (1966).
- [6] K. Nagami: Σ -spaces (to appear).
- [7] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 9, 236-254 (1967).
- [8] K. Nagami: σ -spaces and product spaces (to appear).