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1. Introduction. In our previous paper [7] we have introduced
the notion of a a-locally finite net as a generalization of a countable
net (cf. [2], [5]) and studied the spaces with a-locally finite nets as a
class of a topological spaces which contains all metric spaces.

Definition. A collection of subsets of a topological space X is
said to be a net for X if the following condition is satisfied:

For every point x of X and every open neighborhood U of x
there exists an element B of with x e Bc U.

A collection of subsets of X is said to be a a-locally finite net
if it is a net and it is a union of a countable number of subcollections
which are locally finite in X. We shall say that X is a a-space if X
has a a-locally finite net (cf. [6]).

The notion of net was introduced and discussed by A. Arhangel’skii
[1]" and several results were obtained by him in [1], [2] and, also, by
E. Michael [4] in the case of countable nets.

The purpose of this paper is to study the images of a-spaces under
closed mappings) and to prove the following two theorems.

Theorem 1. Let f be a closed mapping of a normal T1 a-space
X onto a topological space Y. Then the set {yl3f-(y) is not countably
compact} is a a-discrete subset of Y; that is, it is a countable union of
discrete subsets of Y, where f-l(y) denotes the boundary of f-(y)
for each y e Y.

Theorem 2. Let f be a closed mapping of a normal T1 a-space
X onto a topological space Y. Then Y is a a-space, too.

As regards Theorem l N. Lagnev [3] proved it in the case of
metric space. He proved also, in another paper [4], the following
theorem:

In order that a T space X be a closed image of a metric space, it
is necessary and sufficient that X is a Frgchet-Urysohn space) with

1) This fact was pointed out to us by Professor A. Arhangel’skii. We express
our thanks to his advice.

2) All mappings in this paper are continuous.
3) X is a Frdchet-Urysohn space if, for every subset M of X and x0eM,

there exists a sequence {xnln=l, 2, ..’} of points of M, converging to x0.
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an almost refining sequence of hereditarily conservative covemngs"
comprising a net for X.

By Theorem 2 we can slightly strengthen his result as below"
Corollary. In order that a T space X be a closed image of a

metric space, it is necessary and sufficient that X is a Frgchet-Urysohn
space with an almost refining sequence of locally finite coverings com-
prising a net for X.

In 2 we shall give the related observations which will be needed
for the next section and prove our theorems in :.

2. Preliminaries. Lemma 1. If X is a a-space, then X has a

a-locally finite net !- D! satisfying the following three conditions"

(a) is a locally finite covering of X for n-1, 2,...,
(b) nn+ for n--1, 2, ...,
(c) is closed under finite intersections; that is, ! contains

any of intersections of finite members of for n-1, 2, ....
Proo. Let -- U be a given a-locally finite net for X. With-

out loss of generality we can assume X e . Put- [j and let

be the collection of all intersections of finite members o n or n

=1, 2,.... Then it is easily seen that !0-t2! is a a-locally finite
n=l

net or X satisfying all conditions.
Definition. Let x be a point of a topological space X and

{Sn(x) ln-- 1, 2, .} a sequence of subsets of X with x S(x) or
n= 1, 2, .. Then we shall say that (Sn(x) In= 1, 2, } is a strict x-
sequence if any sequence {Xn In= 1, 2, } with Xn e S(x) converges to
x. The notion of x-sequence was introduced by A. Arhangel’skii [2]
in the sense that any sequence {xln=l, 2,...} has an accumulation
point in X.

Proposition 1. Let X be a a-space. Then X has a a-locally finite
net such that for each point x e X there exists a subcollection
{S(x) n-1, 2, } of which is a strict x-sequence.

Proof. Let = U! be a a-locally finite net o,r X satisfying all

conditions in Lemma 1. For an arbitrary point x e X select a minimal

4) A system {F, a e I} of closed subsets of X is said to be hereditarily con-
servative if for any subset ’ of and any system {M, a e 2’} of closed subsets
of X, such that M,F,, the set U M, is closed in, X. A sequence {iili-l, 2, ...}

of closed coverings of X is said to be almost refining if for any point x0 e X, any
system {Bi] i=l, 2, ...}, such that Bi e and x0 e B,, is either hereditarily.con-
servative, or else forms a net at x0.
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member Sn(x) of containing x for n-l, 2,.... The existence of
such S(x) is assured by (c) of Lemma 1. Since is a net for X, we
can see that (Sn(x) l--- 1, 2, is a strict x-sequence. This completes
the proof.

Definition. Let x be a point of topological space X and ! a col-
lection of subsets of X with x e B for each B e !. Then we shall say
that is a local net at x if, whenever x e U with U open in X, then
x e B U or some B e !0 (cf. [8]).

From the definition we can obtain the following, immediately.
Proposition 2. Let x be a point of a topological space X and

{Bn In- 1, 2, } a decreasing sequence of subsets of X which is a local
net at x. Then {B In- 1, 2, is a stric$ x-sequence.

Lemma 2. Let !’ and be nets for T. spaces X and Y, respec-
tively, and f a closed mapping of X onto Y. Then the collection

{B’ ( f-I(C) B’ e !’, C } is a net for X having the following
property"

If f(B.) is finite subset of Y for B.I, ..., B. e !, then for each

y e f(B=) there exist BI, ..., B in ! such that {y}= f(B).
i=l =1

Proof. It is easily seen that is a net for X. Now let us put

f(B,)={yl, ..., y} for B, ..., B. e .
Since Y is a T, space, there exists a disjoint collection {V, ..., V} of
open subsets of Y such that y e V or i-1, ..., m. Since is a net
or Y, there exist C, ..., C in with y eCU for i= 1, ..., m.
Hence, if we put B-f-(C) B. or g’= 1, ., k i- 1, ., m, then
each B is a member o ! with y e f(B). Accordingly, we have

f(B)= [C f(B.)]-C f(B.)]-{y} for i- 1, ..., m.
This completes the proof.
Proposition :. Let f be a closed mapping of a topological space

X onto a topological space Y and an arbitrary locally finite closed
covering of X. Then the set

K-{yl{y}- f(F) for some n and for some F.I, ..., F. e }
is discrete in X.

Proof2 For an arbitrary point Y0 e Y let
V= Y- ( {f(r=) lF= e , Yo e f(F.)}.

Then V is an open subset of Y containing Y0 by the assumption. Now
it is sufficient to show that V contains at most one point of K. If y

5) After we have proved this proposition, Professor J. Suzuki pointed out
that it may be proved more shortly. Here we do it according to his suggestion.
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is a point of VK, we can see that y e K implies {y}- f(F,,) for
l=l

some n and for some F,, ...,F e , and that y e V implies Yo e f(F)
for i-1, ..., n. Hence we have {y}= f(F,,) Yo and, consequently,

t=l

Y--Yo. This completes our proof.

:o Proof of Theorems. Proof of Theorem 1. Let = [J be

a a-locally finite net or X satisfying all conditions in Lemma 1 and
--f()--{f(B)lB e} or n-1, 2, .... Then it is easily seen that- [2 is a net Y. Furthermore, since X is a regular T space, we

can assume that each B e is closed in X.
Now, let us put

Y-{YI{Y}- f(B) for some k and or some B, ..., B e n}

ior n=l, 2, .... Then each Y is discrete in Y by Proposition 3. Ac-

cordingly, it is sufficient to show that for each y e Y-- [J Y, 3f-(y) is

countably compact.
On the contrary, let us assume that 3f-(yo) is not countably com-

pact for some Y0 e Y--[J Y. Then 3f-(yo)contains an infinite and

discrete subset {x In-l, 2,... } of X. Since X is a normal T space,
there exists a discrete collection {U In- 1, 2, of open subsets of
X with Xn e U for n-1, 2, .... For each n, let B(xn) be the minimal
member in with x e B(Xn). Then it is easily seen that each
sequence {B(x)li- 1, 2, is a decreasing, local net at x and each
sequence {f(B(x)li-1, 2, is a decreasing, local net at Y0, too.
Hence we can choose an l with x e Btn(X)U for each n and, with-
out loss of generality, we can assume that ll.... If we put C

fBt(Xn)) for each k, then {CI k- 1, 2, } is a decreasing sequence
t--1

in Y, each of which contains Y0 and, in addition, it is a local net at Y0.
Therefore, it is a strict y0-sequence by Proposition 2. Since Y0 is not

in [J Y, each C is an infinite subset of Y by Lemma 2. Accordingly,

we can select a point p in Bn(X) for each n such that {f(p)ln
1, 2, } is an infinite subset of Y with f(p) e C and f(Pn)Yo :[or

each n. Consequently, we obtain a sequence {f(Pn)In=1, 2,...} in Y
converging to Y0. On the other hand, since {Uln-1, 2,...} is dis-
crete, {p In-l, 2,...} is also discrete in X and, since f is a closed
mapping, {f(p)ln-1, 2, ..} must be closed in Y. This is a contra-
diction. The proof is completed.

Proof of Theorem 2. Let Q be the aggregate of all points y of
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Y with 3f-(y)-=. For each y in Q select a point x(y) from f-(y).
Let

P-- {x(y) y e Q} U U {f-l(y) y e Q}].
Then P is closed in X. Since P has also a a-locally finite net (cf. [7])
and f lP is a closed mapping onto Y, it is sufficient to prove our
Theorem in the case of X-P. Therefore, without loss of generality,
we can assume that 3f-(y)-f-(y) for each y e Y with 3f-(y):/:

Let !- U !n be a a-locally finite net for X satisfying all conditions

in Lemma 1. In addition, since X is regular, each member of is a
closed subset of X. Let

Yn-- {Y f-(Y) ( B= for all but finite
or each n. Then each Y is open in Y. That is, for an arbitrary Y0 e Y
V= Y- [f(B,)]B e !n, Yo e,f(B,)} is an open subset of Y containing
Y0, since !n is a locally finite closed covering of X and f is a closed
mapping. Furthermore, if y is in V, we have that f-(y)B,: im-
plies f-l(y0) B,4:i for B, e !n. This shows that V is contained in
Y and, certainly, Y is open in Y.

Since X is perfectly normal (cf. [7]), Y is so, too. Hence, or
each n we can put Y’- Y- Yn-- G with decreasing sequence

=1

{Gli=l, 2,...} of open subsets of Y.
Now, let us put
n={f(B)--GnlBe!0.} for i=1,2,...;n-1,2,...,

and show that each n is locally finite in Y. Let y be an arbitrary
point of Y. If y is in G, is clearly locally finite at y. If y is
not in Gni, y must be in Y. By the construction of Yn Y is contained
in only finite members of f()--{f(B,)lB e, !}, in other words, the
last collection is point-finite at y and, moreover, it is closure-preserv-
ing) in Y. Hence f(n) is locally finite at y and, consequently, is
locally finite at y.

Finally, let us put
Y’- {ylf-l(y) is not countably compact}

and show that

i,n=l

is a a-locally finite net for Y. Since Y’ is a-discrete in Y by Theorem
1 and each is iocally finite in Y, it remains only to prove that is
a net for Y. Let y be an arbitrary point of Y and U an arbitrary
open subset of Y containing y. Since it is clear for y in Y’, we can

6) A collection lI is said to be closure-preserving if for any cllU{VIVe}
N {VI V e 3}. For any locally finite collection II in X f(l) is closure-preserving

in Y by the closedness of f.
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assume that f-(y) is countably compact and, consequently, y is in Y
forn-l, 2,.... Since 3 is a net or X, there exist an n and B in

with y e f(B,,) U. Since y is not in Y’, we can choose/ such that
y eGn. Hence we have y ef(B)-GnU and f(B)-Gen.
This shows that is a net or Y. This completes the proof.
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