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149. Approximation o Transport Process
by Transport Chain

By Toitsu WATANABE

Nagoya University

(Comm. by Kinjir KuIIU(t, M. $.A., Sept. 12, 1968)

It is classical but important that the difference equations are
closely related to diffusional equations. In connection with stochastic
problems, this fact shows that discrete models serve as an approxima-
tion to continuous models of random motions. As is well known, the
Brownian motion appears as a limit of random walk in various senses.
In particular, F. Knight [3] has made pathwise approximation of
Brownian motion by joining paths of random walk.

Now, let us consider the telegraph equation of infinite cable.
Then it will be seen that there corresponds a stochastic process, called
the transport process.

The purpose of this paper is to construct the approximate discrete
chain of transport process (Theorem 1) and next, to prove, similarly
to the Knight’s result in Brownian motion’s case, the pathwise con-
vergence of this discrete chain to the transport process (Theorem 2).

1. Definition. Let S be the product space of one-dimensional
Euclidian space E and the two points set 6-(---+ 1}. Let X= [X(0
=(x(t), t?(t)), + c, t, P(.), (x, 0) e S] be the right continuous strong
Markov process over the state space S such that

( P,){X(t)-(x+cO, 0)1 < v}--l,
where v- inf {t" O(t) (0)},

(ii) P(,o){V t}=e-,
(iii) P(,){X(v)=(y, -O’)lX(v-)-(y, 09}-1.
Definition 1.1. The Markov process X is called the transport

process (with speed c).
For simplicity, we always suppose that
Assumption 1.1. c-- 1, -- 1.
Let us denote by {Tt} the semigroup corresponding to the trans-

port process X, i.e.
(1.1) T,f(x, 0)- E(,o)[f(X(O)],
where E(,0) is the expectation with respect to P(,0)-measure.

Proposition 1.1. For any given nice function f on S, U(t, x, O)
Ttf(x, O) is the unique solution of the following telegraph equation"

(1.2) {U(t,x,O)=OU(t,x,O)-U(,x,O)+U(t,x,-O),U(t, x, O)---f(x, O) as t---O.
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Let Z be the space consisting of the countable points (z, O) e S, i
-0, _+1, _+2, ...,t?-___l. Let R--[R(Ic),P,] be the Markov chain
on Z such that

(i) P,{R(1)-(z+, O))-p,o,
(ii) P {R(1)-(z-0))-1 p,o.(z,0)

Definition 1.2. The Markov chain R is called the transpor.t chain
on Z.

Proposition 1.2 For any functionfonZ U(k, i, t?)-ER [f(R(k))](zi,O)

is .the unique solution of the following par.tial difference equa.tion"
U(k+ 1, z, t?)-U(k, z, t?)-P,,U(lc, z,/, t?)

(1.3) + (1-pi,)U(/c, z, -/9)- U(k, z, ),
U(O, z,, O)=f(z,, 0).

2. Construction of approximate chain. We shall construct an
approximate sequence of transport chain for the given transport
process X.

Putting Z-{(i/2, 0)"i-0, _+1, _+2, ..., 0-_+1}(n-I, 2, ...),w e
define a series of Markov times’
(2.1) a(w)-O,
(2.2) a(w)- a(1/2n, w) A a*(w),
(2.3) a(oo)- a_l(w) + a(oo+ ), k >_ 2,)

le-1

where a(a, o9) inf {t" ?(s, w)-- (0, w) or all s _< .t
and x(t, o9) x(0, o9) a},

a*(w)- inf {" (, o9) :/: 0(0, o9) and x(, w)- x(0, w)}.
Lemma 2.1. (i) E(0,)[a]--1/2n.

E(0.0) [I a-- 1/2nl ] 2-2n+ 1.

(ii) E(0)[la k/2l 2] 1- k2-.
3

(iii) P(o,){X(aD=(t?/2’, 9)}=1/(1+2-).
(iv) P(o,o){Maxla-k/2’l >s} <_ 1 Ks-22-3n.

Proof. Denote by Ra(2 0) the resolvent operator corresponding

to X, i.e. Raf--t-:e-*Ttf d.t. Then we have

Rff(x, 0)--- e-l-l{(1 +,)f(y, 0)+ f(v, -O)}dy
(..

----21 e-l,-,f(y, O)dy + -- e f(y, O)dy,

where fl 2+ 22.
By the similar way as in [2], this formula enables us to compute the
following Laplace transforms"

denotes the shitte.d path of (cir. [2]).
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(2.5) E(0 )[e-(()*)] (1-F + )e-+ 1
1++/9+e-

(2.6) E(0,)[e-(()*), a(a) a*]-
(1 + 2 + fl)-e-’’

e-

Thus, expanding both sides in (2.5) (respectively (2.6)) in Taylor
series of R, we can obtain the properties (i) (respectively (iii)).

Noting that a is the sum o k-independent copies o a with
respect to P(0,)-measure, we.can get the properties (ii) and, by sub-
martingale inequality (iv). Thus we complete the proof.

Now we define the stochastic process Rn--[R(k), P(/,),(i/2
e Z], which is desired, as follows"
(2.7) R(k)-X(a) k-O, 1, 2, ....

Then we have
Theorem 1. (i) The stochastic process R is the transport chain

which satisfies
(2.8) P(/n,){Rn(1)-((i -- t)/2n, )}- 1/(1 + 2-n),
(2.9) P(/,,){Rn(1)- (i/2n, )} 2 / (1 + 2-n).

(ii) Let f be a function on S such that
(2.10) f(x, O)-- f(x,
(2.11) f(x, O)-- f(x., 0)
for some constant L. Then it holds that
(2.12) lim E(/.,,)[f(Rn([t/2-n]))] E(z.,)[f(X(t))]
uniformly in O_t<_T for each (]/2, ) e S.

Proof. Property (i) is easily obtained by the strong Markov
property and Lemma 2.1.

Noting that Rn(k) -X(6) and the transport process X is spatially
homogeneous with respect to x e E, we have or k2-n__t (k-l- 1)2-n

E(/,o)[f(Rn([t/2-n]))]--E(/,%)[f(X(t))]l
(2.13) =E(o,)[f(X(a))]-E(o,)[f(X(t))]_

LE(o,)[I X(a) X(t) I],
where is the quasi-metric on S obtained by
(2.14) I(Xz, t?z)-(x.,
Because the speed of X is 1 (Assumption 1.1),
(2.15) X(t)-X(s) I_lt-
Therefore we have by Lemma 2.1

E(0,) [I X(a) X(t) I]_
E(0,) [[ ( k2- I]

(2.16) __(E(o,o)[[(--k2-n]])l/-2

_<2T 2 for
Combining (2.13) with (2.16),
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(2.17) The right-hand side of (2.13) _<2LT 2-n,
which implies the properties (ii).

Thus we finish the proof.
Corollary-. Let f(x,t?) be a suitably smooth function which

satisfies both Conditions (2.10) and (2.11). Let U(t, x, ?) and Un(k, i, )
be the solutions of (2.18) and (2.19) for initial data f, respectively.

(2.18) [ U(t, x, t?)-f(x, ) as t--,O.

(2.19)

Un(k- 1, i, )--U(k, i,

Then

Un(0, i, )- fn(i, ),
where fn(i, t?)-- f(i/2, 0).

1 U(k, +, )
1+2-2-n+U(k, i, --t)
1+2---U(k, , ),

(2.20) ]Un([t/2-n], [X/2-n], )--U(t, x, g) _2L-2-n,
uniformly for O<t<T and --cx c.

3. Pathwise convergence. Let Xbe the given transport process
and consider a sequence of transport chain R defined by (2.7). Then
this sequence is approximate chains in the following sense. Define
Xn(t) by
(3.1) Xn(t)--Rn([t/2-n]).
Then it holds that

Theorem 2. P(0,0){lim Max,Xn(t)--X(t),-O}-l.
OKtT

Proof. Let k2-n__t< (k+1)2-. Then
(3.2) ,X(t)--X(O, <_ ,X(a)--X(k2-), + ,X(k2-n)--X(t),

since ,X(t) X(s), <_ t- s 1.
On the other hand, it follows from Lemma 1.1 that

P(0,){ max ]a--k2 >2-/3}
OKkK[TI2-n]

(3.3)

_
1__ [T/2_n]2_/3
3

<1 (T+ 1)2-4/
--3

Using Borel-Cantelli lemma, we obtain
(3.4) P(0,0){lim max la-k2-n]-O}-l.
Combining with (2.4), we complete the proof.
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