147. General Theory of Mappings

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

In his paper [1], J. R. Büchi considered the notion of functions on a set. Some of his results are true for the both set theories in the senses of G. Cantor and S. Leśniewski. In this paper, we concern with a theory of functions on a set in the sense of G. Cantor.

Let E, E' be two given sets, f a function from 2^E to $2^{E'}$, where 2^E , $2^{E'}$ denote the sets of all subsets of E, E' respectively.

J. R. Büchi [1] introduced a notion of a pair of functions (f, \bar{f}) as follows: f and \bar{f} are a pair of functions, if, for any function f, there is a function \bar{f} from $2^{E'}$ to 2^E such that $A' \cap f(A) = 0$ implies $\bar{f}(A') \cap A = 0$, where $A \in 2^E$, $A' \in 2^{E'}$. J. R. Büchi obtained some important properties on (f, \bar{f}) (see [1]). Among these properties, an important result is the representation of $\bar{f}: f(A') = \cap \{X \mid f(E-X) \subset E' - A'\}$.

If (f, \bar{f}) is a pair of functions, then for $\{A_{\alpha}\}, A_{\alpha} \subset E$, we have $f(\bigcup A_{\alpha}) = \bigcup_{\alpha} f(A_{\alpha})$ (see [1], p. 164). Hence f is a multiform mapping in the sense of Dubreil ([4]-[7]).

Further we have $\overline{f}(f(A)) \supset A$. To prove it, take an element x of A. Suppose that $\overline{f}(f(A)) \cap x = \phi$, then $f(A) \cap f(x) = 0$, which contradicts to $f(x) \subset f(A)$.

For the empty set ϕ and E, we have $\overline{f}(f(\phi)) = \phi$, $\overline{f}(f(E)) = E$. Therefore the family \mathfrak{M} of all subsets A of E such that $\overline{f}(f(A)) = A$ is not empty.

Let $A = \bigcup A_{\alpha}$, $A_{\alpha} \in \mathfrak{M}$, then we

$$\bar{f}(f(A)) = \bar{f}(f(\bigcup A_{\alpha})) = \bar{f}(\bigcup f(A_{\alpha})) = \bigcup \bar{f}(f(A_{\alpha})) = \bigcup A_{\alpha} = A.$$

Let $B = \bigcap_{\alpha} A_{\alpha}$, $A_{\alpha} \in \mathfrak{M}$, then

$$\bar{f}(f(B)) = \bar{f}(f(\bigcap_{\alpha} A_{\alpha})) \subset \bar{f}(\bigcap_{\alpha} f(A_{\alpha})) \subset \bigcap_{\alpha} \bar{f}(f(A_{\alpha})) = \cap A_{\alpha} = B.$$

On the other hand, $B \subset \overline{f}(f(B))$ for any subset B of E.

For any subset $A \in \mathfrak{M}$, $(E-A) \cap \overline{f}(f(A)) = (E-A) \cap A = \phi$. Hence $f(E-A) \cap f(A) = \phi$.

This implies $\overline{f}(f(E-A)) \cap A = \phi$, and we have $\overline{f}(f(E-A)) \subset E-A$. Therefore, we have the following

Theorem 1. The family \mathfrak{M} of all subsets A such that f(f(A))

¹⁾ In this Note, we shall assume that $f(x) \neq 0$ for every $x \in E$.

=A is a set-field.

Following P. Dubreil [6], a function f is called *semi-uniform*, if for any elements x, y of E, $f(x) \cap f(y) \neq \phi$ implies f(x) = f(y).

Theorem 2. The function \overline{f} for a semi-uniform function f is semi-uniform.

Proof. Let $\overline{f}(x') \cap \overline{f}(y') \neq \phi$ for two elements x', y' of E', then there is an element $u \in \overline{f}(x')$, $\overline{f}(y')$. Hence $x', y' \in f(u)$. Take any element z of $\overline{f}(x')$, then we have $x' \in f(z)$. Hence $f(u) \cap f(z) \neq \phi$. Since f is semi-uniform, f(u) = f(z). Therefore $y' \in f(z)$, and we have $z \in \overline{f}(y')$. Hence $\overline{f}(x') \subset \overline{f}(y')$. Similarly $\overline{f}(y') \subset \overline{f}(x')$.

We denote $\overline{f}(f(A))$, $\overline{f}(f(\overline{f}(f(A))))$, ... for a pair of functions (f, \overline{f}) by $(\overline{f}f)(A)$, $(\overline{f}f)^2(A)$, For any subset A of E, we define h(A) by

(1) $\{y | y \in (\overline{f}f)^n(A) \text{ for some } n\}.$ Then h is a mapping from 2^E to 2^E .

For any element x, suppose that $f(x) \neq \phi$, hence $f(x) \cap f(x) \neq \phi$. Therefore $x \in (\bar{f}f)(x)$. By repeating the same argument, we have $x \in (\bar{f}f)^n(x)$ and consequently $x \in h(x)$. Hence for any subset A of E, $A \subset h(A)$, i.e., h is a reflexive relation on E (see [1], p. 163).

For any subsets A, B, suppose that $h(A) \cap B \neq \phi$. Then there is an element x such that $x \in h(A) \cap B$. Hence for some n and $y \in A$, $x \in (\bar{f}f)^n(y)$. Therefore $y \in (\bar{f}f)^n(x)$. This means $A \cap h(B) \neq \phi$. Hence we have $h = \bar{h}$, i.e., h is a symmetric relation (see [1], p. 163).

By the definition of h(x), we have $h(h(A)) \subset h(A)$, i.e., h is a transitive relation (see [1], p. 163). Therefore h is an equivalence relation on E.

Theorem 3. The function h defined by (1) gives an equivalence relation on E, where $f(x) \neq 0$ for every $x \in E$.

As already mentioned, a function $f: 2^E \rightarrow 2^E$ satisfying 1) $A \subset f(A)$, 2) f(A) = f(A), and 3) $f(f(A)) \subset f(A)$ for every subset A of E is called an equivalence relation on E.

Let f be an equivalence relation on E. If $f(x) \cap f(y) \neq \phi$, then we have $x \cap f(f(y)) \neq \phi$, i.e., $x \in f(f(y))$. By 3), $x \in f(y)$. Hence $f(x) \subset f(f(y)) \subset f(y)$. Similarly we have $f(y) \subset f(x)$. This shows f(x) = f(y). Therefore we have the following

Theorem 4. An equivalence relation is semi-uniform.

Let f, g be two equivalence relation of a set E. A function $g * f : 2^E \rightarrow 2^E$ is defined by

 $(g * f)(A) = \{y | y \in (gf)^n(A) \text{ for some } n=0, 1, 2, \dots\}.$

For g * f, we have $A \subset (g * f)(A)$, and $(g * f)((g * f)(A)) \subset (g * f)(A)$ by the definition g * f. Let $y \in (gf)^n(A)$. By 1), $A \subset g(A)$. Hence $f(A) \subset f(g(A))$. Consequently we have $(gf)^n(A) \subset g(fg)^n(A)$. Therefore

664

 $y \in g(fg)^n(A)$, and then

$$y \in f(y) \subset f(g(fg)^{n}(A)) = (fg)^{n+1}(A).$$

This shows that g * f is symmetric.

Theorem 5. If f, g are two equivalence relation, then g * f (= f * g) is an equivalence relation.

Let f, g be two equivalence relations on a set E. If, for any three elements a, b, and $x, a \in f(x)$ and $b \in g(x)$ imply $a \in g(y), b \in f(y)$ for some $y \in E$, f, and g is called to be *associable* (This notion and Theorem 6 are essentially due to [3]).

Theorem 6. If h is associable to f and g, then h is associable to g * f.

Proof. Let $a \in h(x)$ and $b \in (g * f)(x)$, then $b \in (gf)^n(x)$ for some *n*. Hence $f(x) \cap g(fg)^{n-1}(b) \neq \phi$. Then there is an element $c_1 \in f(x)$ $\cap g(fg)^{n-1}(b)$. $c_1 \in f(x)$, $a \in h(x)$ imply that there is an element d such that

 $c_1 \in h(d), \qquad a \in f(d).$ $c_1 \in g(fg)^{n-1}(b)$ implies $g(c_1) \cap (fg)^{n-1}(b) \neq \phi$, and we find an element c_2

 $c_2 \in g(c_1), \qquad c_2 \in (fg)^{n-1}(b).$

By $d \in h(c_1)$, $c_2 \in g(c_1)$, there is an element e_1 such that $d \in g(e_1)$, $c_2 \in h(e_1)$. Therefore, by $a \in f(d)$ and $d \in g(e_1)$, we have

1) $a \in f(g(e_1))$.

On the other hand, by $c_2 \in (fg)^{n-1}(b)$ we have $b \in (gf)^{n-1}(c_2)$. Hence, by $c_2 \in h(e_1)$,

2) $b \in (gf)^{n-1}(h(e_1)).$

By repeating this technique, we find some element e_n such that $a \in (fg)^n(e_n)$ and $b \in h(e_n)$. This shows $a \in (g * f)(y)$ and $b \in h(y)$ for some y.

A modern algebraic theory of equivalence relations is found in [2], [3]. These results can be treated by our function method.

For two functions $f, g: 2^E \to 2^F$, we define $f \leq g$ by $f(A) \subset g(A)$ for every subset A of E. $(f \cap g)(A)$ is defined by $f(A) \cap g(A)$, and $(f \cup g)(A)$ by $f(A) \cup g(A)$.

Let (f, \overline{f}) , (g, \overline{g}) be two pairs of functions. Suppose that $A' \cap (f(A) \cup g(A)) = 0$,

then we have

$$A' \cap f(A) = 0, \qquad A' \cap g(A) = 0$$

and $\overline{f}(A') \cap A = \overline{g}(A') \cap A = 0.$ Therefore
 $(\overline{f}(A') \cup \overline{g}(A')) \cap A = 0,$

which means that $(f \cup g, \overline{f} \cup \overline{g})$ is a pair of functions. Hence we have $\overline{f \cup g} = \overline{f} \cup \overline{g}$.

Next we shall prove $\overline{f \cap g} \leqslant \overline{f} \cap \overline{g}$. Let $x \in (\overline{f \cap g})(A)$, then

 $(f \cap g)(x) \cap A = 0$. There is an element y such that $y \in (f \cap g)(x) \cap A$, i.e., $y \in (f \cap g)(x)$, $y \in A$. Hence $y \in f(x)$, g(x) and then $x \in \overline{f}(y)$, $\overline{g}(y)$. Therefore $x \in \overline{f}(A) \cap \overline{g}(A)$.

We prove the following Dedekind relation (see J. Riquet [8]).

Let (f, \bar{f}) , (g, \bar{g}) , and (h, \bar{h}) be pairs of functions: $2^{E} \rightarrow 2^{F}$, $2^{F} \rightarrow 2^{G}$ and $2^{E} \rightarrow 2^{G}$ respectively. Then we have

3) $((gf) \cap h)(x) \subset (g \cap (h\bar{f}))(\bar{f} \cap (\bar{g}h))(x).$

Let $y \in ((gf) \cap h)(x)$, then $y \in g(f(x))$, $y \in h(x)$. Hence $\overline{g}(y) \cap f(x) \neq \phi$, and $\overline{g}(y) \subset \overline{g}(h(x))$. From $y \in h(x)$, we have $x \in \overline{h}(y)$, and $f(x) \subset f(\overline{h}(y))$. Therefore

 $f(x) \cap \overline{g}(h(x)) \cap \overline{g}(y) \cap f(\overline{h}(y)) \neq \phi.$

Hence

 $(f \cap (\overline{g}h))(x) \cap (\overline{g} \cap (f\overline{h}))(y) \neq \phi.$

This implies

 $y \in (\overline{\overline{g} \cap (f\overline{h})})(f \cap (\overline{g}h))(x) \subset (\overline{\overline{g}} \cap (\overline{f}\overline{h}))(f \cap (\overline{g}h))(x)$ $= (g \cap (h\overline{f}))(f \cap (\overline{g}h))(x).$

Therefore we have the Dedekind relation 3).

References

- J. R. Büchi: Die Boole'sche Partialordnung und die Paarung von Gefügen. Portugallae Math., 7, 119-180 (1948).
- [2] A. Châtelet: Algèbre des relations de congruence. Annales scient. École normal, 64, 339-368 (1947).
- [3] P. Dubreil et M. L. Dubreil-Jacotin: Thèorie algébrique des relations d' équivalence. Jour. de Math., 18, 63-95 (1939).
- [4] M. L. Dubreil-Jacotin: Quelques propriétés des applications multiformes.
 C. R. de Paris, 230, 806-808 (1950).
- [5] —: Applications multiformes et relations d'équivalences. C. R. de Paris, 203, 906-908 (1950).
- [6] P. Dubreil: Relations binaires et applications. C. R. de Paris, 1028-1030 (1950).
- [7] —: Comportment des relations binaires dans une application multiforme.
 C. R. de Paris, 230, 1242-1244 (1950).
- [8] J. Riquet: Relations binaires, fermetures, correspondences de Galois. Bull. Soc. Math. de France, 76, 114-153 (1948).

666