147. General Theory of Mappings

By Kiyoshi Iséki
(Comm. by Kinjirô KunugI, M. J. A., Sept. 12, 1968)

In his paper [1], J. R. Büchi considered the notion of functions on a set. Some of his results are true for the both set theories in the senses of G. Cantor and S. Leśniewski. In this paper, we concern with a theory of functions on a set in the sense of G. Cantor.

Let E, E^{\prime} be two given sets, f a function from 2^{E} to $2^{E^{\prime}}$, where $2^{E}, 2^{E^{\prime}}$ denote the sets of all subsets of E, E^{\prime} respectively.
J. R. Büchi [1] introduced a notion of a pair of functions (f, \bar{f}) as follows: f and \bar{f} are a pair of functions, if, for any function f, there is a function \bar{f} from $2^{E^{\prime}}$ to 2^{E} such that $A^{\prime} \cap f(A)=0$ implies $\bar{f}\left(A^{\prime}\right) \cap A=0$, where $A \in 2^{E}, A^{\prime} \in 2^{E^{\prime}}$. J. R. Büchi obtained some important properties on (f, \bar{f}) (see [1]). Among these properties, an important result is the representation of $\bar{f}: f\left(A^{\prime}\right)=\cap\{X \mid f(E-X)$ $\left.\subset E^{\prime}-A^{\prime}\right\}$.

If (f, \bar{f}) is a pair of functions, then for $\left\{A_{\alpha}\right\}, A_{\alpha} \subset E$, we have $f\left(\bigcup_{\alpha} A_{\alpha}\right)=\bigcup_{\alpha} f\left(A_{\alpha}\right)$ (see [1], p. 164). Hence f is a multiform mapping in the sense of Dubreil ([4]-[7]).

Further we have $\bar{f}(f(A)) \supset A$. To prove it, take an element x of A. Suppose that $\bar{f}(f(A)) \cap x=\phi$, then $f(A) \cap f(x)=0$, which contradicts to $f(x) \subset f(A)$.

For the empty set ϕ and E, we have $\bar{f}(f(\phi))=\phi, \bar{f}(f(E))=E$. Therefore the family \mathfrak{M} of all subsets A of E such that $\bar{f}(f(A))=A$ is not empty.

Let $A=\cup A_{\alpha}, A_{\alpha} \in \mathfrak{M}$, then we

$$
\bar{f}(f(A))=\bar{f}\left(f\left(\bigcup_{\alpha} A_{\alpha}\right)\right)=\bar{f}\left(\bigcup_{\alpha} f\left(A_{\alpha}\right)\right)=\bigcup_{\alpha} \bar{f}\left(f\left(A_{\alpha}\right)\right)=\cup A_{\alpha}=A .
$$

Let $B=\cap_{\alpha} A_{\alpha}, A_{\alpha} \in \mathfrak{M}$, then

$$
\bar{f}(f(B))=\bar{f}\left(f\left(\cap_{\alpha} A_{\alpha}\right)\right) \subset \bar{f}\left(\cap_{\alpha} f\left(A_{\alpha}\right)\right) \subset \cap_{\alpha} \bar{f}\left(f\left(A_{\alpha}\right)\right)=\cap A_{\alpha}=B .
$$

On the other hand, $B \subset \bar{f}(f(B))$ for any subset B of E.
For any subset $A \in \mathfrak{M},(E-A) \cap \bar{f}(f(A))=(E-A) \cap A=\phi$. Hence $f(E-A) \cap f(A)=\phi$.
This implies $\bar{f}(f(E-A)) \cap A=\phi$, and we have $\bar{f}(f(E-A)) \subset E-A$. Therefore, we have the following

Theorem 1. The family \mathfrak{M} of all subsets A such that $f(f(A))$

1) In this Note, we shall assume that $f(x) \neq 0$ for every $x \in E$.
$=A$ is a set-field.
Following P. Dubreil [6], a function f is called semi-uniform, if for any elements x, y of $E, f(x) \cap f(y) \neq \phi$ implies $f(x)=f(y)$.

Theorem 2. The function \bar{f} for a semi-uniform function f is semi-uniform.

Proof. Let $\bar{f}\left(x^{\prime}\right) \cap \bar{f}\left(y^{\prime}\right) \neq \phi$ for two elements x^{\prime}, y^{\prime} of E^{\prime}, then there is an element $u \in \bar{f}\left(x^{\prime}\right), \bar{f}\left(y^{\prime}\right)$. Hence $x^{\prime}, y^{\prime} \in f(u)$. Take any element z of $\bar{f}\left(x^{\prime}\right)$, then we have $x^{\prime} \in f(z)$. Hence $f(u) \cap f(z) \neq \phi$. Since f is semi-uniform, $f(u)=f(z)$. Therefore $y^{\prime} \in f(z)$, and we have $z \in \bar{f}\left(y^{\prime}\right)$. Hence $\bar{f}\left(x^{\prime}\right) \subset \bar{f}\left(y^{\prime}\right)$. Similarly $\bar{f}\left(y^{\prime}\right) \subset \bar{f}\left(x^{\prime}\right)$.

We denote $\bar{f}(f(A)), \bar{f}(f(\bar{f}(f(A)))), \cdots$ for a pair of functions (f, \bar{f}) by $(\bar{f} f)(A),(\bar{f} f)^{2}(A), \cdots$. For any subset A of E, we define $h(A)$ by
(1) $\left\{y \mid y \in(\bar{f} f)^{n}(A)\right.$ for some $\left.n\right\}$.
Then h is a mapping from 2^{E} to 2^{E}.
For any element x, suppose that $f(x) \neq \phi$, hence $f(x) \cap f(x) \neq \phi$. Therefore $x \in(\bar{f} f)(x)$. By repeating the same argument, we have $x \in(\bar{f} f)^{n}(x)$ and consequently $x \in h(x)$. Hence for any subset A of E, $A \subset h(A)$, i.e., h is a reflexive relation on E (see [1], p. 163).

For any subsets A, B, suppose that $h(A) \cap B \neq \phi$. Then there is an element x such that $x \in h(A) \cap B$. Hence for some n and $y \in A$, $x \in(\bar{f} f)^{n}(y)$. Therefore $y \in(\bar{f} f)^{n}(x)$. This means $A \cap h(B) \neq \phi$. Hence we have $h=\bar{h}$, i.e., h is a symmetric relation (see [1], p. 163).

By the definition of $h(x)$, we have $h(h(A)) \subset h(A)$, i.e., h is a transitive relation (see [1], p. 163). Therefore h is an equivalence relation on E.

Theorem 3. The function h defined by (1) gives an equivalence relation on E, where $f(x) \neq 0$ for every $x \in E$.

As already mentioned, a function $f: 2^{E} \rightarrow 2^{E}$ satisfying 1) $A \subset f(A)$, 2) $f(A)=f(A)$, and 3) $f(f(A)) \subset f(A)$ for every subset A of E is called an equivalence relation on E.

Let f be an equivalence relation on E. If $f(x) \cap f(y) \neq \phi$, then we have $x \cap f(f(y)) \neq \phi$, i.e., $x \in f(f(y))$. By 3), $x \in f(y)$. Hence $f(x) \subset f(f(y)) \subset f(y)$. Similarly we have $f(y) \subset f(x)$. This shows $f(x)$ $=f(y)$. Therefore we have the following

Theorem 4. An equivalence relation is semi-uniform.
Let f, g be two equivalence relation of a set E. A function $g * f: \mathbf{2}^{E} \rightarrow \mathbf{2}^{E}$ is defined by

$$
(g * f)(A)=\left\{y \mid y \in(g f)^{n}(A) \text { for some } n=0,1,2, \cdots\right\} .
$$

For $g * f$, we have $A \subset(g * f)(A)$, and $(g * f)((g * f)(A)) \subset(g * f)(A)$ by the definition $g * f$. Let $y \in(g f)^{n}(A)$. By 1), $A \subset g(A)$. Hence $f(A)$ $\subset f(g(A))$. Consequently we have $(g f)^{n}(A) \subset g(f g)^{n}(A)$. Therefore
$y \in g(f g)^{n}(A)$, and then

$$
y \in f(y) \subset f\left(g(f g)^{n}(A)\right)=(f g)^{n+1}(A)
$$

This shows that $g * f$ is symmetric.
Theorem 5. If f, g are two equivalence relation, then $g * f$ $(=f * g)$ is an equivalence relation.

Let f, g be two equivalence relations on a set E. If, for any three elements a, b, and $x, a \in f(x)$ and $b \in g(x)$ imply $a \in g(y), b \in f(y)$ for some $y \in E, f$, and g is called to be associable (This notion and Theorem 6 are essentially due to [3]).

Theorem 6. If h is associable to f and g, then h is associable to $g * f$.

Proof. Let $a \in h(x)$ and $b \in(g * f)(x)$, then $b \in(g f)^{n}(x)$ for some n. Hence $f(x) \cap g(f g)^{n-1}(b) \neq \phi$. Then there is an element $c_{1} \in f(x)$ $\cap g(f g)^{n-1}(b) . \quad c_{1} \in f(x), a \in h(x)$ imply that there is an element d such that

$$
c_{1} \in h(d), \quad a \in f(d)
$$

$c_{1} \in g(f g)^{n-1}(b)$ implies $g\left(c_{1}\right) \cap(f g)^{n-1}(b) \neq \phi$, and we find an element c_{2} such that

$$
c_{2} \in g\left(c_{1}\right), \quad c_{2} \in(f g)^{n-1}(b)
$$

By $d \in h\left(c_{1}\right), c_{2} \in g\left(c_{1}\right)$, there is an element e_{1} such that $d \in g\left(e_{1}\right)$, $c_{2} \in h\left(e_{1}\right)$. Therefore, by $a \in f(d)$ and $d \in g\left(e_{1}\right)$, we have

1) $a \in f\left(g\left(e_{1}\right)\right)$.

On the other hand, by $c_{2} \in(f g)^{n-1}(b)$ we have $b \in(g f)^{n-1}\left(c_{2}\right)$. Hence, by $c_{2} \in h\left(e_{1}\right)$,
2) $b \in(g f)^{n-1}\left(h\left(e_{1}\right)\right)$.

By repeating this technique, we find some element e_{n} such that $a \in(f g)^{n}\left(e_{n}\right)$ and $b \in h\left(e_{n}\right)$. This shows $a \in(g * f)(y)$ and $b \in h(y)$ for some y.

A modern algebraic theory of equivalence relations is found in [2], [3]. These results can be treated by our function method.

For two functions $f, g: 2^{E} \rightarrow 2^{F}$, we define $f \leqslant g$ by $f(A) \subset g(A)$ for every subset A of $E . \quad(f \cap g)(A)$ is defined by $f(A) \cap g(A)$, and $(f \cup g)(A)$ by $f(A) \cup g(A)$.

Let $(f, \bar{f}),(g, \bar{g})$ be two pairs of functions. Suppose that $A^{\prime} \cap(f(A) \cup g(A))=0$,
then we have

$$
A^{\prime} \cap f(A)=0, \quad A^{\prime} \cap g(A)=0
$$

and $\bar{f}\left(A^{\prime}\right) \cap A=\bar{g}\left(A^{\prime}\right) \cap A=0$. Therefore

$$
\left(\bar{f}\left(A^{\prime}\right) \cup \bar{g}\left(A^{\prime}\right)\right) \cap A=0,
$$

which means that $(f \cup g, \bar{f} \cup \bar{g})$ is a pair of functions. Hence we have $\overline{f \cup g}=\bar{f} \cup \bar{g}$.

Next we shall prove $\overline{f \cap g} \leqslant \bar{f} \cap \bar{g}$. Let $x \in(\overline{f \cap g})(A)$, then
$(f \cap g)(x) \cap A=0$. There is an element y such that $y \in(f \cap g)(x) \cap A$, i.e., $y \in(f \cap g)(x), y \in A$. Hence $y \in f(x), g(x)$ and then $x \in \bar{f}(y), \bar{g}(y)$. Therefore $x \in \bar{f}(A) \cap \bar{g}(A)$.

We prove the following Dedekind relation (see J. Riquet [8]).
Let $(f, \bar{f}),(g, \bar{g})$, and (h, \bar{h}) be pairs of functions: $2^{E} \rightarrow 2^{F}, 2^{F} \rightarrow 2^{G}$ and $2^{E} \rightarrow 2^{G}$ respectively. Then we have
3) $\quad((g f) \cap h)(x) \subset(g \cap(h \bar{f}))(\bar{f} \cap(\bar{g} h))(x)$.

Let $y \in((g f) \cap h)(x)$, then $y \in g(f(x)), y \in h(x)$. Hence $\bar{g}(y) \cap f(x) \neq \phi$, and $\bar{g}(y) \subset \bar{g}(h(x))$. From $y \in h(x)$, we have $x \in \bar{h}(y)$, and $f(x) \subset f(\bar{h}(y))$. Therefore

$$
f(x) \cap \bar{g}(h(x)) \cap \bar{g}(y) \cap f(\bar{h}(y)) \neq \phi .
$$

Hence

$$
(f \cap(\bar{g} h))(x) \cap(\bar{g} \cap(f \bar{h}))(y) \neq \phi .
$$

This implies

$$
\begin{aligned}
y & \in(\overline{\bar{g} \cap(f \bar{h}}))(f \cap(\bar{g} h))(x) \subset(\bar{g} \cap(\overline{f \bar{h}}))(f \cap(\bar{g} h))(x) \\
& =(g \cap(h \bar{f}))(f \cap(\bar{g} h))(x) .
\end{aligned}
$$

Therefore we have the Dedekind relation 3).

References

[1] J. R. Büchi: Die Boole'sche Partialordnung und die Paarung von Gefügen. Portugallae Math., 7, 119-180 (1948).
[2] A. Châtelet: Algèbre des relations de congruence. Annales scient. École normal, 64, 339-368 (1947).
[3] P. Dubreil et M. L. Dubreil-Jacotin: Thèorie algébrique des relations d' équivalence. Jour. de Math., 18, 63-95 (1939).
[4] M. L. Dubreil-Jacotin: Quelques propriétés des applications multiformes. C. R. de Paris, 230, 806-808 (1950).
[5] -: Applications multiformes et relations d'équivalences. C. R. de Paris, 203, 906-908 (1950).
[6] P. Dubreil: Relations binaires et applications. C. R. de Paris, 1028-1030 (1950).
[7] -: Comportment des relations binaires dans une application multiforme. C. R. de Paris, 230, 1242-1244 (1950).
[8] J. Riquet: Relations binaires, fermetures, correspondences de Galois. Bull. Soc. Math. de France, 76, 114-153 (1948).

