134. On Some Trigonometric Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m. J. A., Sept. 12, 1968)

1. Introduction and Theorems. 1.1. Let us consider a trigonometric series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

If we write $r_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$, then the series (1) can be written in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n} \cos \left(n x+c_{n}\right), \quad-\pi / 2 \leqq c_{n}<3 \pi / 2 \tag{2}
\end{equation*}
$$

We denote by α_{0} the root of the equation

$$
\int_{0}^{3 \pi / 2} x^{-\alpha} \cos x d x=0
$$

It is known that $\alpha_{0}=0.30844 \cdots$.
In the case $c_{n}=0(n=1,2, \cdots)$ in (2), we have proved the following theorems [1], as generalization of Chowla's and Selberg's theorems [2].

Theorem I. If the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ diverges for $a \beta, 0 \leqq \beta<\alpha_{0}$, then

$$
\lim _{N \rightarrow \infty} \sup \left\{-\min _{0 \leq x<\pi}\left(\sum_{n=1}^{N} r_{n} \cos n x / \sum_{n=1}^{N} r_{n}\right)\right\} \geqq A(\beta)
$$

where $A(\beta)=-(1-\beta)(2 /(3 \pi))^{1-\beta} \int_{0}^{3 \pi / 2} x^{-\beta} \cos x d x>0$. The constant $A(\beta)$ is the best possible one.

Theorem II. Let $0 \leqq \beta<\alpha_{0}$. If there exist $A>0$ and $\lambda, 0 \leqq \lambda$ $<1-\beta$ such that

$$
\sum_{n=1}^{N} r_{n} \cos n x \geqq-A N^{\lambda} \quad \text { for all } x \text { and all } N,
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ converges.
1.2. For non-vanishing $\left(c_{n}\right)$, Chidambaraswamy and Shah [3] have proved the following generalization of Chowla's and Selberg's theorems [2].

Theorem III. If $r_{0}>0$,

$$
\sum_{n=0}^{N} r_{n} \cos \left(n x+c_{n}\right) \geqq 0 \quad \text { for all } x \text { and all } N
$$

and there exist $a>0,0<\beta<1$, and $d=d(a, \beta)>0$ such that

$$
\sup _{n \leqq 1} \int_{0}^{a} x^{-\beta} \cos \left(x+c_{n}\right) d x \leqq-d
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ converges.
Theorem IV. Let $0<\beta<1,1 \leqq b<1 /(1-\beta), 0<\gamma<1-b(1-\beta)$. If

$$
\sup _{n \geqq 1} \int_{0}^{3 \pi / 2} x^{-\beta} \cos \left(x+c_{n}\right) d x \leqq-d<0
$$

and the sequence of positive integers $n_{k}(k \geqq 1)$, satisfies the condition

$$
1 \leqq n_{1}<n_{2}<\cdots, n_{N} \leqq A N^{b+\varepsilon} \quad(0<\varepsilon<1-(1-\beta) b-\gamma)
$$

then

$$
\limsup _{N \rightarrow \infty}\left\{-N^{-r} \min _{0 \leq x \leq 2 \pi} \sum_{k=1}^{N} \cos \left(n_{k} x+c_{k}\right)\right\}>0
$$

1.3. We shall prove the theorems which contain above theorems as particular case.

Theorem 1. If there exist $a>0,0<\beta<1$, and $d>0$ such that

$$
\begin{equation*}
\sup _{n \geqq 1} \int_{0}^{a} x^{-\beta} \cos \left(x+c_{n}\right) d x=-d \tag{3}
\end{equation*}
$$

and the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ diverges, then

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}\left\{-\min _{0 \leq x \leq \pi}\left(\sum_{n=1}^{N} r_{n} \cos \left(n x+c_{n}\right) / \sum_{n=1}^{N} r_{n}\right)\right\} \geqq A^{\prime}(\beta) \tag{4}
\end{equation*}
$$

where $A^{\prime}(\beta)=d(1-\beta) / a^{1-\beta}$. The constant $A^{\prime}(\beta)$ is the best possible one.

If $c_{n}=0$ for all n in (2), then the theorem reduces to Theorem I. If all coefficients a_{n} and b_{n} in the series (1) are non-negative, then $0 \leqq c_{n} \leqq \pi / 2$ and then we can take $a=3 \pi / 2$ in (3) and (3) is satisfied by $\beta<\alpha_{0}$. Thus we get the following

Corollary 1. If $a_{n} \geqq 0$ and $b_{n} \geqq 0$ for all n in (1) and the series $\sum_{n=1}^{\infty} \sqrt{a_{n}^{2}+b_{n}^{2}} / n^{1-\beta}$ diverges for $a \beta, 0 \leqq \beta<\alpha_{0}$, then
$\limsup _{N \rightarrow \infty}\left\{-\min _{0 \leqq x \leqq 2 \pi}\left(\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right) / \sum_{n=1}^{N} \sqrt{a_{n}^{2}+b_{n}^{2}}\right)\right\} \geqq A^{\prime \prime}(\beta)$ where $A^{\prime \prime}(\beta)$ is a positive constant.

If one of c_{n} is $-\pi / 2$ or $\left(c_{n}\right)$ has limiting point $-\pi / 2$, then the equation (3) does not hold for any a, any β, and any d. Suppose that $-\pi / 2$ $+\delta \leqq c_{n} \leqq(3 \pi / 2)-\delta$ for all n, then, taking $a=2 \pi-\delta$, the equation (3) has a solution. If $c_{n}=\pi / 2$, then the series (1) becomes the sine series $-\sum_{n=1}^{\infty} r_{n} \sin n x$ and the relation (3) holds for any $\beta, 0<\beta<1$, and for any $a>0$, hence we have

Corollary 2. In the case of sine series $\sum_{n=1}^{\infty} b_{n} \sin n x$, if $b_{n} \geqq 0$ for
all n and the series $\sum_{n=1}^{\infty} b_{n} / n^{\alpha}$ diverges for an $\alpha, 0<\alpha<1$, then

$$
\limsup _{N \rightarrow \infty}\left\{\max _{0 \leq x \leq n}\left(\sum_{n=1}^{N} b_{n} \sin n x / \sum_{n=1}^{N} b_{n}\right)\right\} \geqq A^{\prime \prime \prime}
$$

where $A^{\prime \prime \prime}$ is a positive constant.
Finally suppose that $\left(n_{k}\right)$ is an increasing sequence of integers and that $a_{n_{k}}=1$ for $k=1,2, \cdots$ and the other a_{n} are zero. Then Theorem 1 reduces to

Corollary 3. If there exist $a>0,0<\beta<1$, and $d>0$ such that

$$
\sup _{n \geqq 1} \int_{0}^{a} x^{-\beta} \cos \left(x+c_{n_{k}}\right) d x=-d
$$

and $\sum_{k=1}^{\infty} n_{k}^{\beta-1}$ diverges, then

$$
\limsup _{N \rightarrow \infty}\left\{-\min _{0 \leqq x \leq 2 \pi}\left(\frac{1}{N} \sum_{k=1}^{N} \cos \left(n_{k} x+c_{n_{k}}\right)\right)\right\} \geqq A^{\prime \prime \prime \prime}(\beta)
$$

where $A^{\prime \prime \prime \prime}(\beta)=d(1-\beta) a^{1-\beta}>0$.
This contains Theorem IV as a particular case.
Theorem 1 can be stated in the following equivalent form.
Theorem 1'. If there exist $a>0,0<\beta<1$, and $d>0$ satisfying the condition (3) and if, for any $\delta, 0<\delta<1$,

$$
\sum_{n=1}^{N} r_{n} \cos \left(n x+c_{n}\right) \geqq-\delta A^{\prime}(\beta) \sum_{n=1}^{N} r_{n} \quad \text { for all } N \text { and all } x \text {, }
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ converges.
Theorem III is a particular case of Theorem 1^{\prime} and then of Theorem 1 since we can suppose that $\sum_{n=1}^{\infty} r_{n}$ diverges.

Our second theorem is as follows:
Theorem 2. If there exist $a>0,0<\beta<1$, and $d>0$, satisfying the condition (3) and further if there exist $A>0$ and $0<\lambda<1-\beta$ such that

$$
\begin{equation*}
\sum_{n=1}^{N} r_{n} \cos \left(n x+c_{n}\right) \geqq-A N^{2} \quad \text { for all } N \text { and } x \tag{5}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ converges.
If all c_{n} vanish, then this theorem reduces to Theorem II, and further Theorem III is also a particular case of Theorem 2. If $c_{n}=\pi / 2$ for all n, then the relation (3) is satisfied for any $\beta, 0<\beta<1$, and a suitable a and the left side of (5) reduces to the sine series $-\sum_{n=1}^{\infty} r_{n} \sin n x$. Thus we get

Corollary 4. If there exist $A>0$ and $\lambda, 0<\lambda<a<1$, such that

$$
\sum_{n=1}^{N} r_{n} \sin n x \leqq A N^{2} \quad \text { for all } N \text { and } x
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{a}$ converges.
2. Proof of Theorems. 2.2. Proof of Theorem 1. Consider $a>0,0<\beta<1$, and $d>0$, satisfying the condition (3), then

$$
-d \sum_{n=1}^{N} \frac{r_{n}}{n^{1-\beta}} \geqq \sum_{n=1}^{N} \frac{r_{n}}{n^{1-\beta}} \int_{0}^{a} x^{-\beta} \cos \left(x+c_{n}\right) d x
$$

$$
=\sum_{n=1}^{N} r_{n} \int_{0}^{a / n} x^{-\beta} \cos \left(n x+c_{n}\right) d x=\sum_{n=1}^{N} r_{n} \sum_{j=n}^{\infty} \int_{a /(j+1)}^{a / j}
$$

$$
=\sum_{n=1}^{N} \sum_{j=n}^{N}+\sum_{n=1}^{N} \sum_{j=n+1}^{\infty}=\sum_{j=1}^{N} \sum_{j=1}^{j}+\sum_{j=N+1}^{\infty} \sum_{n=1}^{N}
$$

$$
=\sum_{j=1}^{N-1} \int_{a /(j+1)}^{a / j}\left(\sum_{n=1}^{j} r_{n} \cos \left(n x+c_{n}\right)\right) x^{-\beta} d x
$$

$$
+\int_{0}^{a / N}\left(\sum_{n=1}^{N} r_{n} \cos \left(n x+c_{n}\right)\right) x^{-\beta} d x \text {. }
$$

If we put $s_{j}=\sum_{n=1}^{j} r_{n}$ and suppose that

$$
\begin{equation*}
M(j)=\min _{0 \leqq x \leq 2 \pi}\left(\sum_{n=1}^{j} r_{n} \cos \left(n x+c_{n}\right)\right) \geqq-\delta A^{\prime}(\beta) s_{j} \tag{7}
\end{equation*}
$$

for all $j, 1 \leqq j \leqq N$, and for some $\delta, 0<\delta<1$, then (6) gives

$$
\begin{aligned}
-d \sum_{n=1}^{N} \frac{r_{n}}{n^{1-\beta}} & \geqq-\delta A^{\prime}(\beta)\left(\sum_{j=1}^{N-1} s_{j} \int_{a /(j+1)}^{a / j} x^{-\beta} d x+s_{N} \int_{0}^{a / N} x^{-\beta} d x\right) \\
& =-\delta d\left(\sum_{j=1}^{N-1} s_{j}\left(j^{\beta-1}-(j+1)^{\beta-1}\right)+s_{N} N^{\beta-1}\right) \\
& =-\delta d \sum_{j=1}^{N} \frac{r_{j}}{j^{1-\beta}} .
\end{aligned}
$$

This is a contradiction and then, for any $\delta, 0<\delta<1$, there is a j such that the relation (7) does not hold. By divergence of the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$, we have, for any $\delta, 0<\delta<1$,

$$
M(j)<-\delta A^{\prime}(\beta) s_{j} \quad \text { for infinitely many } j
$$

and then

$$
\lim _{N \rightarrow \infty} \sup \left(-M(N) / s_{N}\right) \geqq \delta A^{\prime}(\beta) .
$$

Since δ is any positive number <1, we get the required relation (4).
2.2. Proof of Theorem 2. By (6) and the assumption (5),

$$
\begin{aligned}
-d \sum_{n=1}^{N} \frac{r_{n}}{n^{1-\beta}} & \geqq-A \sum_{j=1}^{N-1} j^{2} \int_{a /(j+1)}^{a / j} x^{-\beta} d x-A N^{2} \int_{0}^{a / N} x^{-\beta} d x \\
& \geqq-A \int_{0}^{a} x^{-\lambda-\beta} d x=-A a^{1-\lambda-\beta} /(1-\lambda-\beta)
\end{aligned}
$$

and then

$$
\sum_{n=1}^{N} \frac{r_{n}}{n^{1-\beta}} \leqq A a^{1-\lambda-\beta} /(1-\lambda-\beta) d \text { for all } N .
$$

Thus we get the convergence of the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$.

References

[1] M. Izumi and S. Izumi: On some trigonometric polynomials (to appear in the Scandinavica Math.).
[2] S. Chawla: Some applications of a method of A. Selberg. Norske Vid. Selsk. Forh., 36 (1963). Nr. 40; J. für Math., 217, 128-132 (1965).
[3] J. Chidambaraswamy and S. M. Shah: Trigonometric series with nonnegative partial sums. J. für Math., 229, 163-169 (1968).

