130. A Note on Semi-prime Modules. I

By Hidetoshi MARUBAYASHI
Department of Mathematics, Yamaguchi University
(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1968)

Feller and Swokowski [1, 2] have generalized Goldie's works on prime and semi-prime rings [3, 4] to modules.

It is the aim of the present note to investigate these modules and semi-prime Goldie rings. This note lays a result concerning the dimensions of semi-prime modules and of semi-prime Goldie rings. We can prove that the set of the subisomorphism classes of basic submodules of a semi-prime R-module M corresponds one-to-one onto the set of the minimal annihilator ideals of the semi-prime Goldie ring R (see Theorem 7) under no maximum conditions for right complements and for right annihilators of M. The relationship between prime and semi-prime modules is also studied, and Theorem 8 shows that clM_i is a prime R_i -module, where clM_i is a homogeneous component of M, and R_i is the minimal annihilator ideal of R which corresponds to clM_i .

Throughout this paper, R will denote a right Goldie ring; that is

- (a) R satisfies the maximum condition for right complements;
- (b) R satisfies the maximum condition for right annihilators. All R-modules will mean faithful right R-modules. If M and N are R-modules, then M is an essential extension of N if $N \subseteq M$ and $N \cap L \neq 0$ for every non-zero submodule L of M. In this case, we call N a large submodule of M. We shall also speak of large right ideals of R by considering R as a right module over itself. Let M be an R-module and let X and Y be subsets of M and R respectively, then the annihilators are defined as $X_r = \{a \in R \mid xa = 0 \text{ for all } x \in X\}$ and $Y_i = \{m \in M \mid my = 0 \text{ for all } y \in Y\}$. The closure clN of a submodule N of M is defined by $clN = \{m \in M \mid mL \subseteq N : L \text{ a large right ideals of } R\}$. If clN=N, then N is said to be closed. If R is a semi-prime Goldie ring, then according to Theorem 5 in [4], a right ideal of R is large if and only if it contains a regular element. Hence, in this case, $clN = \{m \in M \mid mc \in N : c \text{ a regular element of } R\}$. The singular submodule M^{\blacktriangle} of M is defined as cl0. Let A be a right ideal of R. Then the singular submodule of A-module M is denoted by $(M_A)^{\blacktriangle}$. As in [2], an R-module M is said to be semi-prime if the prime radical $P(M)^{1}$

¹⁾ Cf. [2, p. 825].

of M is zero. It follows from the definition that $M^{\blacktriangle} \subseteq P(M)$ and consequently if M is semi-prime, then we have $M^{\blacktriangle} = 0$. "submodule" and "homomorphism" will mean always "R-submodule" and "R-homomorphism" respectively.

From Proposition 3.5 and Theorem 4.8 in [2] we have

Proposition 1. Let R be a Goldie ring and let M be a faithful R-module with M=0. Then M is semi-prime if and only if R is semi-prime.

As in [5, p. 270] we say that R-modules M and N are subisomorphic if there exist isomorphisms θ and ϕ such that $\theta M \subseteq N$ and $\phi N \subseteq M$. A submodule B of an R-module M is said to be basic if B is subisomorphic to each of its submodules and $B^{\blacktriangle}=0$. A right ideal J of a ring R is said to be basic if J is a basic submodule when it is considered as a right R-module.

Proposition 2. Let M be a semi-prime R-module. Then

- (i) Every non-zero submodule of M contains a basic submodule.
- (ii) Every basic submodule of M is subisomorphic to a basic right ideal of R and conversely.

Proof. (i): Let J be a direct sum of uniform right ideals J_i $(i=1,\dots,n)$ and let J be large in R. If N is a non-zero submodule of M and if n is a non-zero element of N, then we have $nJ\neq 0$, because $M^{\blacktriangle}=0$. Hence $nJ_i\neq 0$ for some i. By Theorem 2.4 in [1], we have $J_i\cong nJ_i$. However, by Lemma 3.1 in [5], J_i is a basic right ideal and thus nJ_i is a basic submodule contained in N. (ii): Since M is faithful, applying the method of proof of part (i), it will be evident.

Clearly a submodule of a basic module is also basic. If M is a semi-prime module, then a basic submodule of M is uniform. For, by Proposition 2 a basic submodule contains a uniform submodule and is isomorphic to a submodule of the latter, so is itself uniform.

From the definition of basic submodules we have easily

Lemma 3. Let M be a semi-prime uniform R-module and let B and B' be basic submodules of M. Then B and B' are subisomorphic.

We now classify the uniform submodules of M as follows: Uniform submodules U and V are said to be related (in symbol: $U \sim V$), provided that basic submodules contained in U and V are subisomorphic. In particular, if U and V are basic submodules, then $U \sim V$ if and only if U and V are subisomorphic.

Proposition 4.2 Let M be a finite dimensional semi-prime Rmodule in the sense of Goldie [4] and $n = \dim M$. Suppose that both $U_1 + \cdots + U_n$ and $V_1 + \cdots + V_n$ are direct sums of uniform submodules

²⁾ Cf. [7].

³⁾ Cf. [4, p. 202].

of M, then it is possible to number the direct summands in such a way that $U_i \sim V_i$ $(i=1, \dots, n)$.

Proof. Let $S_1 = U_2 \oplus \cdots \oplus U_n$. If $S_1 \cap V_i \neq 0$ for all i $(i=1, \cdots, n)$, then, by Theorem 1.1 in [4], S_1 is large in M. Hence we have $n-1 = \dim M$, which is a contradiction. Thus there exists V_i such that $S_1 \cap V_i = 0$. We renumber so that $S_1 \cap V_1 = 0$. Since $S_1 \oplus V_1$ is large, we have $(S_1 \oplus V_1) \cap U_1 \neq 0$. By Proposition 2 $(S_1 + V_1) \cap U_1$ contains a basic submodule B. For each $b \in B$, we write $b = v_1 + u_2 + \cdots + u_n$, where $v_1 \in V_1$ and $u_i \in U_i$. As b runs over B, the map $\theta: b \to v_1$ is a homomorphism of B into V_1 . By Lemma 5.4 in [5], θ is either zero or an isomorphism. If $\theta = 0$, then we have $B \subseteq U_2 + \cdots + U_n$, a contradiction. Hence θ is an isomorphism and thus we have $U_1 \sim V_1$. Since $V_1 \oplus U_2 \oplus \cdots \oplus U_n$ is large, we can repeat the process with this direct sum instead of $U_1 \oplus \cdots \oplus U_n$. Set $S_2 = V_1 \oplus U_3 \oplus \cdots \oplus U_n$ and replace U_2 by V_2 (renumbering U_i if necessary). Then $V_1 \oplus V_2 \oplus U_3 \oplus \cdots \oplus U_n$ is large and $U_2 \sim V_2$. Continuing in this way, we obtain $U_1 \sim V_1, \cdots U_n \sim V_n$.

Corollary. Let R be a semi-prime Goldie ring and $n=\dim R$. Suppose that both $I_1+\cdots+I_n$ and $J_1+\cdots+J_n$ are direct sums of uniform right ideals of R, then it is possible to number the direct summands in such a way that $I_i \sim J_i$ $(i=1, \dots, n)$.

If N is a submodule of a semi-prime R-module M and Q is the right quotient ring of R, then as in [6, p. 134] N can be imbedded in the Q-module $N \otimes_R Q \cong NQ$. The elements of NQ may be written in the form nc^{-1} for an element $n \in N$ and for a regular element $c \in R$, and we may assume that $N \subseteq NQ$, where $n \in N$ is identified with $n \cdot 1 \in NQ$.

Let R be a semi-prime Goldie ring with the right quotient ring Q and let R_1, \dots, R_t be the minimal annihilator ideals of R. Then, according to [4], $Q_1 = R_1 Q, \dots, Q_t = R_t Q$ are the minimal ideals of Q and R_t is a Goldie prime ring with the right quotient ring Q_t $(i=1,\dots,t)$.

Proposition 5. Let R be a semi-prime Goldie ring and let I, J be uniform right ideals of R. Then the following conditions are equivalent.

- (i) $IQ \cong JQ$,
- (ii) $I \sim J$,
- (iii) $I_r = J_r$,
- (iv) $I, J \subseteq R_i \text{ for some } i \ (1 \leq i \leq t).$

Proof. (i) \Rightarrow (ii): Let θ be an isomorphism of IQ onto JQ. Then we can show that I and J contain isomorphic non-zero right ideals $\theta^{-1}(\theta I \cap J)$ and $I \cap J$ respectively. Hence $I \sim J$. (ii) \Rightarrow (iii) will be seen by the property of subisomorphic. (iii) \Rightarrow (iv): By Theorem 5.1 in [4], there exist i, k, such that $I \subseteq R_i$ and $J \subseteq R_k$. Since R is semi-prime, it

follows that $I_r \supseteq R_1 \oplus \cdots \oplus R_{i-1} \oplus R_{i+1} \oplus \cdots \oplus R_t$, $I_r \supseteq R_i$ and that $J_r \supseteq R_1 \oplus \cdots \oplus R_{k-1} \oplus R_{k+1} \oplus \cdots \oplus R_t$, $J_r \supseteq R_k$. Hence we have i = k. (iv) \Rightarrow (i): It follows from the fact that IQ is a minimal right ideal and R_iQ is a simple component of Q.

Consider the set of basic submodules of M and the equivalence classes of basic submodules under subisomorphism. We denote by $\{B\}$ the class to which the basic submodule B belongs and by M_B the sum of all $B' \in \{B\}$. Then we have $(M_B)_r = B'_r$ for every $B' \in \{B\}$.

Lemma 6. Let B' be a basic submodule contained in M_B . Then $B' \in \{B\}$.

Proof. Suppose that $B' \in \{B\}$, then by Propositions 2 and 5 there exist uniform right ideals J, J' in R_i , R_j $(i \neq j)$ respectively such that $J \sim B$ and $J' \sim B'$. Hence $B'_r = J'_r \supseteq R_j$ and $J_r = B_r \supseteq R_j$. However, by the assumption, $B'_r \supseteq (M_B)_r = B_r \supseteq R_j$. This is a contradiction.

From Propositions 2 and 5 M has only a finite number k of subisomorphism classes of basic submodules and k is equal to t, where t is the number of the minimal annihilator ideals of R. Let M_1, \dots, M_t be the corresponding sum of submodules of these classes. Then, by Propositions 2 and 5 there is one-to-one correspondence, in the sense of subisomorphism, between $\{M_t\}$ and $\{R_t\}$.

In the remainder of this paper, R_i will denote a minimal annihilator ideal of R which corresponds to M_i $(i=1, \dots, t)$.

Then we have the following properties: $(B_i)_r = (M_i)_r = (J_i)_r \supseteq R_j$ $(i \neq j)$ and $\supseteq R_i$, where B_i is a basic submodule in M_i and J_i is a uniform right ideal in R_i $(i=1,\dots,t)$.

Now suppose that $M_1\cap (M_2+\cdots+M_t)\neq 0$, then there exists a basic submodule B contained in $M_1\cap (M_2+\cdots+M_t)$. By Lemma 6 and by the above note, $B_r \supseteq R_1$. However, by the above note we have $B_r \supseteq R_1$, which is a contradiction. Thus $M_1+\cdots+M_t$ is a direct sum. Moreover $M_1\oplus\cdots\oplus M_t$ is large, because otherwise there would be a basic submodule B such that $B\cap (M_1\oplus\cdots\oplus M_t)=0$ which cannot hold. We have therefore

Theorem 7. Let M be a semi-prime R-module. Then

- (i) M has only a finite number k of subisomorphism classes of basic submodules and k is equal to t, where t is the number of the minimal annihilator ideals of R.
- (ii) If M_1, \dots, M_t are the corresponding sum of submodules of these classes, then $M_1 + \dots + M_t$ is a direct sum, which is a large submodule of M.

As in [1], an R-module M is said to be prime if $N_r=0$ for every non-zero submodule N of M and $M^{\blacktriangle}=0$.

Corollary. Let M be a semi-prime R-module. Then M is prime

if and only if t=1.

Proof. Suppose that M is prime, then R is a prime Goldie ring by Proposition 1.2 in [1]. Hence, by Lemma 3.1 in [5] and Theorem 7, we have t=1. The "only if" part follows from Lemma 3.1 in [5], Theorem 7 and Proposition 1.3 in [1].

From Proposition 4.1 in [2] $clM_1 + \cdots + clM_t$ is also a direct sum. And it will be proved, by the next theorem, that $U \sim B_i$ if and only if $U \subseteq clM_i$, where U is a uniform submodule and where B_i is a basic submodule contained in M_i . clM_i is a homogeneous component of M $(i=1, \dots, t)$.

Theorem 8. Let M be a semi-prime R-module. Then

- (i) For each uniform submodule U, $U \subseteq clM_i$ if and only if $U \sim B_i$, where B_i is a basic submodule contained in M_i .
 - (ii) M_i is a prime R_i -module $(i=1, \dots, t)$.
 - (iii) clM_i is a prime R_i -module $(i=1, \dots, t)$.

Proof. (i): Suppose that $U \sim B_i$ then, by the definition, there exists a basic submodule B in U such that $B \sim B_i$. Hence $B \in M_i$. By proposition 4.1 in [2], we have $U \subseteq clU = clB \subseteq clM_i$. Conversely suppose that $U \subseteq clM_i$ and that $U \sim B_k$ $(i \neq k)$, where B_k is a basic submodule in M_k , then, we have $U \subseteq clM_k$, a contradiction. Hence $U \sim B_i$. (ii): We prove that M_1 is a prime R_1 -module. In view of Proposition 1.3 in [1], it is enough to show that the singular submodule $(M_{1R_1})^{\blacktriangle}=0$. Let m be an element in $(M_{1R_1})^{\blacktriangle}$. Then there exists a regular element c_1 of R_1 such that $mc_1=0$. Now put $c=c_1+c_2+\cdots+c_t$, where c_i (i=2, \cdots , t) is any regular element of R_i . Then c is a regular element of R and we have mc=0 since $m_r\supseteq R_i$ $(i=2,\dots,t)$. Thus $m\in M^{\blacktriangle}$ and therefore we have $(M_{1R_1})^{\blacktriangle}=0$, as desired. (iii): We prove that clM_1 is a prime R_1 -module. By Proposition 4.1 in [2], we have $M_1Q_1=M_1Q$ $=cl(M_1)Q\supseteq clM_1$. Let $x=m_1c_1^{-1}$ be an element in clM_1 , where $m_1\in M_1$ and c_1 is a regular element of R_1 . Then $xc_1=m_1$. Now suppose that $x \in (clM_1)^{\blacktriangle}_{R_1}$, then there exists a regular element d_1 of R_1 such that $xd_1=0$. For elements c_1 , d_1 , there exist regular elements c_1' , d_1' of R_1 such that $c_1c_1'=d_1d_1'$. Then we have $m_1c_1'=xc_1c_1'=xd_1d_1'=0$ and thus $m_1 \in (M_{1R_1})^{\blacktriangle} = 0$. Hence we have x = 0, which completes the proof.

Remark. Let R be a semi-prime Goldie ring and consider R as a right R-module. Then $clM_i = R_i$ $(i = 1, \dots, t)$. For, by Proposition 5, $M_i \subseteq R_i$. Hence $clM_i \subseteq clR_i = R_i$, since R_i is a complement right ideal in the sence of Goldie [4]. Conversely let $U_1 \oplus \cdots \oplus U_t$ be a large right ideal in R_i , where U_i is a uniform right ideal. Then, by Lemma 3.10 in [4], $cl(U_1 \oplus \cdots \oplus U_t) = R_i$. On the other hand, by Theorem 8, $U_i \subseteq clM_i$ and thus $cl(U_1 \oplus \cdots \oplus U_t) \subseteq clM_i$. Hence we have $clM_i \subseteq R_i$.

References

- [1] E. H. Feller and E. W. Swokowski: Prime modules. Can. J. Math., 17, 1041-1052 (1965).
- [2] —: Semi-prime modules. Can. J. Math., 18, 823-831 (1966).
- [3] A. W. Goldie: The structure of prime rings under ascending chain conditions. Proc. London Math. Soc., 8, 589-608 (1958).
- [4] —: Semi-prime rings with maximum condition. Proc. London Math. Soc., 10, 201-220 (1960).
- [5] A. W. Goldie: Torsion-free modules and rings. J. Algebra, 1, 248-287 (1964).
- [6] L. Levy: Torsion-free and divisible modules over non-integral domains. Can. J. Math., 15, 132-151 (1963).
- [7] Y. Miyashita: On quasi-injective modules. J. Fac. Sci. Hokkaido Univ., I, 18, 158-187 (1965).