176. On the Sets of Points in the Ranked Space. III

By Kin'ichi Yajima,*) Yukio Sakamoto,**) and Hidetake Nagashima***)

(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1968)

In this paper, for a subset A of a ranked space R [1], we shall define two subsets of the ranked space, \bar{A} and \tilde{A}. Both of them have some properties which are analogous to the closure in the usual topological space. We shall introduce several propositions with respect to \bar{A} and \tilde{A}. We have used the same terminology as that introduced in the paper "On the sets of points in the ranked space II." [6].

Definition. Let A be a subset of a ranked space R. Then \bar{A} and \tilde{A} are defined as follows.

$$
\begin{aligned}
& \bar{A}=\left\{x ; \exists\left\{V_{\alpha}(x)\right\}, V_{\alpha}(x) \cap A \neq \phi \text { for all } \alpha\right\}, \\
& \tilde{A}=\left\{x ; \forall\left\{V_{\alpha}(x)\right\}, V_{\alpha}(x) \cap A \neq \phi \text { for all } \alpha\right\},
\end{aligned}
$$

where $\left\{V_{\alpha}(x)\right\}$ is a fundamental sequence of neighborhoods with respect to a point x of R [2] and α is a natural number. We say that \bar{A} is an r-closure of A and that \tilde{A} is a quasi r-closure of A.

Proposition 1. If A is a subset of a ranked space R, then
(1) $\tilde{A} \subseteq \bar{A}$,
(2) if R satisfies Condition (M) [3] then $A=\bar{A}$.

Proof. It is easy to prove (1).
If $p \in \bar{A}$, then by the definition there exists a fundamental sequence of neighborhoods of $p,\left\{V_{\alpha}(p)\right\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α.

Let $\left\{U_{\beta}(p)\right\}$ be an arbitrary fundamental sequence of neighborhoods of p, and $V_{\alpha}(p) \in \mathfrak{I}_{\gamma_{\alpha}}$ and $U_{\beta}(p) \in \mathfrak{H}_{\delta_{\beta}}$. Then for each β, there exists γ_{α} such that $\delta_{\beta} \leq \gamma_{\alpha}$. By Condition (M), $U_{\beta}(p) \supseteq V_{\alpha}(p)$, consequently $U_{\beta}(p) \cap A \neq \phi$. Therefore $p \in \tilde{A}$, that implies $\bar{A} \subseteq \tilde{A}$. Then, $\bar{A}=\tilde{A}$ because by (1) $\bar{A} \supseteq \tilde{A}$.

Remark 1. In general $\bar{A} \neq \tilde{A}$. For example, if $A=\left\{z_{n}\right\}$, where $\left\{z_{n}\right\}$ is a sequence of points in Example 1 [3], then $\bar{A} \neq \tilde{A}$.

Proposition 2. If A and B are subsets of a ranked space, then
(1) if $A \subseteq B$, then $\bar{A} \subseteq \bar{B}$ and $\tilde{A} \subseteq \tilde{B}$,
(2) $A \subseteq \bar{A}$ and $A \subseteq \tilde{A}$,
(3) $\overline{A \cup B}=\bar{A} \cup \bar{B}$ and $\overparen{A \cup B}=\tilde{A} \cup \tilde{B}$,

[^0](4) $\bar{\phi}=\phi$ and $\tilde{\phi}=\phi$,
(5) $\bar{R}=\bar{R}$ and $\tilde{R}=R$.

Proof. It is easy to prove this proposition.
Remark 2. $\bar{A}=\overline{\bar{A}}$ and $\tilde{A}=\tilde{\tilde{A}}$ are not always true. For example, let A be a point p in the example of K. Kunugi [2]. Then, it is shown that \bar{A} is a proper subset of $\overline{\bar{A}}$ and that \tilde{A} is a proper subset of \tilde{A}.

Proposition 3. If A is a subset of a ranked space R, then the following conditions are equivalent.
(a) A is an r-closed subset of R.
(b) $\bar{A}=A$.

Proof. First we will prove that (a) implies (b).
Suppose that $A \neq \bar{A}$, that is, $A \nsupseteq \bar{A}$. Then there exists a point p such that $p \in \bar{A}$ and $p \notin A$. Consequently, $p \in R-A$ and there exists a fundamental sequence of neighborhoods of $p,\left\{V_{a}(p)\right\}$, such that $V_{a}(p)$ $\cap A \neq \phi$ for all α. Hence $R-A$ is not an r-open subset of R. Therefore A is not an r-closed subset of R.

Next we will prove that (b) implies (a).
If A is not an r-closed subset, $R-A$ is not an r-open subset of R. Therefore, there exist a point p of $R-A$ and a fundamental sequence of neighborhoods of p, $\left\{V_{\alpha}(p)\right\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α. Hence $p \in \bar{A}$. Consequently $A \neq \bar{A}$ because $p \notin A$.

Proposition 4. If A is a subset of a ranked space R, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.
(a) A is an r-closed subset of R.
(b) $\tilde{A}=A$.

Proof. If A is an r-closed subset of R, then $A=\bar{A}$ by Proposition 3. Since $A \subseteq \tilde{A} \subseteq \bar{A}$, we have $A=\tilde{A}$.

The example of Remark 1 shows that the converse is not always true, because $A=\tilde{A}$ and $A \neq \bar{A}$.

Proposition 5. Let $\left\{p_{\alpha}\right\}$ be an arbitrary sequence of a ranked space R and $A_{\beta}=\left\{p_{\beta}, p_{\beta+1}, \cdots\right\},(\beta=1,2, \cdots)$, then the following conditions are equivalent.
(a) When p is a point of $R, p \in \bar{A}_{\beta}$ for all β.
(b) A point p is an r-cluster point of $\left\{p_{\alpha}\right\}$.

Proof. First we will prove that (a) implies (b).
If a point p is not an r-cluster point of $\left\{p_{\alpha}\right\}$, then for each fundamental sequence of neighborhoods of $p,\left\{V_{\alpha}(p)\right\}$, and for each natural number γ such that $\beta \leq \gamma$, there exists a natural number β and $V_{\alpha_{0}}(p)$ such that $p_{r} \notin V_{\alpha_{0}}(p)$. Hence $V_{\alpha_{0}}(p) \cap A_{\beta}=\phi$. By the condition (a), there exists a fundamental sequence of neighborhoods of $p,\left\{U_{\alpha}(p)\right\}$,
such that $U_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all α. This is a contradiction.
Next we will prove that (b) implies (a).
Since p is an r-cluster point of $\left\{p_{\alpha}\right\}$, there exists a fundamental sequence of neighborhoods of p, $\left\{V_{\alpha}(p)\right\}$, such that $\left\{P_{\alpha}\right\}$ is frequently in each $V_{\alpha}(p)$. Consequently, for each $V_{\alpha}(p)$ and an arbitrary natural number β, there exists $\delta(\alpha)$ such that $\beta<\delta(\alpha)$ and $p_{\delta(\alpha)} \in V_{\alpha}(p)$. Since $p_{\partial(\alpha)} \in A_{\beta}$, we have $V_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all α. Hence $p \in \bar{A}_{\beta}$ for all β.

Proposition 6. Let $\left\{p_{\alpha}\right\}$ be an arbitrary sequence of a ranked space R and $A_{\beta}=\left\{P_{\beta}, p_{\beta+1}, \cdots\right\},(\beta=1,2, \cdots)$, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.
(a) When p is a point of $R, p \in \tilde{A}_{\beta}$ for all β.
(b) A point p is an r-cluster point of $\left\{p_{\alpha}\right\}$.

Proof. Let $\left\{V_{\alpha}(p)\right\}$ be an arbitrary fundamental sequence of neighborhoods of p. Since $p \in \tilde{A}_{\beta}$, we have $V_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all β. Therefore, $\left\{p_{\alpha}\right\}$ is frequently in each neighborhood $V_{\alpha}(p)$. Hence p is an r-cluster point of $\left\{p_{\alpha}\right\}$.

The example of Remark 1 shows that the converse is not always true. For example, let p_{α} be z_{α} in the example of Remark 1, then the r-cluster point p of the sequence $\left\{p_{\alpha}\right\}$ does not belong to \tilde{A}_{β} for all β.

Proposition 7. If R is a ranked space, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.
(a) If quasi r-closures \tilde{B}_{α} of subsets $B_{\alpha}(\alpha=1,2, \ldots)$ in R are non-empty subsets of R and $\tilde{B}_{1} \supseteq \tilde{B}_{2} \supseteq \cdots \supset \tilde{B}_{\alpha} \supseteq \cdots$, then $\cap \tilde{B}_{\alpha} \neq \phi$.
(b) R is a sequentially compact set.

Proof. Let $\left\{p_{\alpha}\right\}$ be an arbitrary sequence of R and $B_{\alpha}=\left\{p_{\alpha}, p_{\alpha+1}\right.$, $\cdots\},(\alpha=1,2, \cdots)$. We have $\tilde{B}_{1} \supseteq \tilde{B}_{2} \supseteq \cdots \supseteq \tilde{B}_{\alpha} \supseteq \cdots$ and $\tilde{B}_{\alpha} \neq \phi$. Consequently, by the hypothesis there exists a point p such that $p \in \tilde{B}_{\alpha}$ for all α. By Proposition 6, p is an r-cluster point of $\left\{p_{\alpha}\right\}$. Hence R is a sequentially compact set.

The following example shows that the converse is not always true.

Let us consider the ranked space E of Example 2 [2]. Let $R=\left\{z_{n}\right\} \cup\{p\}$, and $U=R \cap V$, where V is a neighborhood of a point in E. If the rank of U is defined to be that of V, R becomes a ranked space. Then R is a sequentially compact set. However, if we suppose that $B_{\alpha}=\left\{Z_{\alpha}, z_{\alpha+1}, \cdots\right\},(\alpha=1,2, \cdots)$, the condition (a) is not satisfied.

Proposition 8. If R is a ranked space, then the following conditions are equivalent.
(a) If B_{α} are non-empty r-closed subsets of R, and $B_{1} \supseteq B_{2}$ $\supseteq \cdots \supseteq B_{\alpha} \supseteq \cdots$, then $\cap B_{\alpha} \neq \phi$.
(b) R is a sequentially compact set.

Proof. First we will prove that (a) implies (b).
Since B_{α} is an r-closed subset, $B_{\alpha}=\tilde{B}_{\alpha}$. Therefore, by Proposition $7, R$ is a sequentially compact set.

Next we will prove that (b) implies (a).
Since $B_{\alpha} \neq \phi$ there exists a sequence $\left\{p_{\alpha}\right\}$ such that $p_{\alpha} \in B_{\alpha}$ for all α. Suppose that $C_{\alpha}=\left\{p_{\alpha}, p_{\alpha+1}, \cdots\right\} \quad(\alpha=1,2, \cdots)$. Since R is a sequentially compact set, $\left\{p_{\alpha}\right\}$ has an r-cluster point p. By Proposition $5, p \in \bar{C}_{\alpha}(\alpha=1,2, \cdots)$. Noting that B_{α} is an r-closed subset of R, $\bar{B}_{\alpha}=B_{\alpha}$. Hence $p \in B_{\alpha}$ for all α. Consequently, $\bigcap_{\alpha} B_{\alpha} \neq \phi$.

References

[1] K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
[2] -: Sur la méthode des espaces rangés. II. Proc. Japan Acad., 42, 549554 (1966).
[3] K. Yajima, Y. Sakamoto, and H. Nagashima: On the sets of points in the ranked space. Proc. Japan Acad., 43, 941-945 (1967).
[4] Y. Sakamoto, H. Nagashima, and K. Yajima: On Compactness in ranked spaces. Proc. Japan Acad., 43, 946-948 (1967).
[5] Y. Yoshida: Compactness in ranked spaces. Proc. Japan Acad., 44, 69-72 (1968).
[6] H. Nagashima, K. Yajima, and Y. Sakamoto: On the sets of points in the ranked space. II. Proc. Japan Acad., 44, 788-791 (1968).

[^0]: *) Japanese National Railways.
 **) Japan Women's University.
 ***) Hokkaido University of Education.

