176. On the Sets of Points in the Ranked Space. III

By Kin'ichi YAJIMA,*) Yukio SAKAMOTO,**) and Hidetake NAGASHIMA***)

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1968)

In this paper, for a subset A of a ranked space R [1], we shall define two subsets of the ranked space, \overline{A} and \widetilde{A} . Both of them have some properties which are analogous to the closure in the usual topological space. We shall introduce several propositions with respect to \overline{A} and \widetilde{A} . We have used the same terminology as that introduced in the paper "On the sets of points in the ranked space II." [6].

Definition. Let A be a subset of a ranked space R. Then \overline{A} and \widetilde{A} are defined as follows.

 $\bar{A} = \{x ; \exists \{V_{\alpha}(x)\}, V_{\alpha}(x) \cap A \neq \phi \text{ for all } \alpha\},\$

 $\tilde{A} = \{x ; \forall \{V_{\alpha}(x)\}, V_{\alpha}(x) \cap A \neq \phi \text{ for all } \alpha\},\$

where $\{V_{\alpha}(x)\}$ is a fundamental sequence of neighborhoods with respect to a point x of R [2] and α is a natural number. We say that \overline{A} is an *r*-closure of A and that \widetilde{A} is a quasi *r*-closure of A.

Proposition 1. If A is a subset of a ranked space R, then

(1) $\tilde{A} \subseteq \bar{A}$,

(2) if R satisfies Condition (M) [3] then $A = \overline{A}$.

Proof. It is easy to prove (1).

If $p \in \overline{A}$, then by the definition there exists a fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α .

Let $\{U_{\beta}(p)\}$ be an arbitrary fundamental sequence of neighborhoods of p, and $V_{\alpha}(p) \in \mathfrak{U}_{\tau_{\alpha}}$ and $U_{\beta}(p) \in \mathfrak{U}_{\mathfrak{s}_{\beta}}$. Then for each β , there exists γ_{α} such that $\delta_{\beta} \leq \gamma_{\alpha}$. By Condition (M), $U_{\beta}(p) \supseteq V_{\alpha}(p)$, consequently $U_{\beta}(p) \cap A \neq \phi$. Therefore $p \in \tilde{A}$, that implies $\bar{A} \subseteq \tilde{A}$. Then, $\bar{A} = \tilde{A}$ because by (1) $\bar{A} \supseteq \tilde{A}$.

Remark 1. In general $\overline{A} \neq \widetilde{A}$. For example, if $A = \{z_n\}$, where $\{z_n\}$ is a sequence of points in Example 1 [3], then $\overline{A} \neq \widetilde{A}$.

Proposition 2. If A and B are subsets of a ranked space, then

- (1) if $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$ and $\widetilde{A} \subseteq \widetilde{B}$,
- (2) $A \subseteq \overline{A} \text{ and } A \subseteq \widetilde{A}$,
- (3) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$,

^{*)} Japanese National Railways.

^{**)} Japan Women's University.

^{***)} Hokkaido University of Education.

- (4) $\bar{\phi} = \phi$ and $\tilde{\phi} = \phi$,
- (5) $\bar{R} = \bar{R}$ and $\tilde{R} = R$.

Proof. It is easy to prove this proposition.

Remark 2. $\overline{A} = \overline{\overline{A}}$ and $\widetilde{A} = \overline{\widetilde{A}}$ are not always true. For example, let A be a point p in the example of K. Kunugi [2]. Then, it is shown that \overline{A} is a proper subset of $\overline{\overline{A}}$ and that \widetilde{A} is a proper subset of $\overline{\widetilde{A}}$.

Proposition 3. If A is a subset of a ranked space R, then the following conditions are equivalent.

(a) A is an r-closed subset of R.

(b) $\bar{A}=A$.

Proof. First we will prove that (a) implies (b).

Suppose that $A \neq \overline{A}$, that is, $A \supseteq \overline{A}$. Then there exists a point p such that $p \in \overline{A}$ and $p \notin A$. Consequently, $p \in R - A$ and there exists a fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α . Hence R - A is not an r-open subset of R. Therefore A is not an r-closed subset of R.

Next we will prove that (b) implies (a).

If A is not an r-closed subset, R-A is not an r-open subset of R. Therefore, there exist a point p of R-A and a fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α . Hence $p \in \overline{A}$. Consequently $A \neq \overline{A}$ because $p \notin A$.

Proposition 4. If A is a subset of a ranked space R, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.

(a) A is an r-closed subset of R.

(b) $\tilde{A} = A$.

Proof. If A is an r-closed subset of R, then $A = \overline{A}$ by Proposition 3. Since $A \subseteq \overline{A} \subseteq \overline{A}$, we have $A = \overline{A}$.

The example of Remark 1 shows that the converse is not always true, because $A = \tilde{A}$ and $A \neq \tilde{A}$.

Proposition 5. Let $\{p_{\alpha}\}$ be an arbitrary sequence of a ranked space R and $A_{\beta} = \{p_{\beta}, p_{\beta+1}, \dots\}, (\beta = 1, 2, \dots), \text{ then the following conditions are equivalent.}$

(a) When p is a point of R, $p \in \overline{A}_{\beta}$ for all β .

(b) A point p is an r-cluster point of $\{p_{\alpha}\}$.

Proof. First we will prove that (a) implies (b).

If a point p is not an r-cluster point of $\{p_{\alpha}\}$, then for each fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, and for each natural number γ such that $\beta \leq \gamma$, there exists a natural number β and $V_{\alpha_0}(p)$ such that $p_{\gamma} \notin V_{\alpha_0}(p)$. Hence $V_{\alpha_0}(p) \cap A_{\beta} = \phi$. By the condition (a), there exists a fundamental sequence of neighborhoods of p, $\{U_{\alpha}(p)\}$,

No. 8]

such that $U_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all α . This is a contradiction.

Next we will prove that (b) implies (a).

Since p is an r-cluster point of $\{p_{\alpha}\}$, there exists a fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, such that $\{P_{\alpha}\}$ is frequently in each $V_{\alpha}(p)$. Consequently, for each $V_{\alpha}(p)$ and an arbitrary natural number β , there exists $\delta(\alpha)$ such that $\beta < \delta(\alpha)$ and $p_{\delta(\alpha)} \in V_{\alpha}(p)$. Since $p_{\delta(\alpha)} \in A_{\beta}$, we have $V_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all α . Hence $p \in \bar{A}_{\beta}$ for all β .

Proposition 6. Let $\{p_{\alpha}\}$ be an arbitrary sequence of a ranked space R and $A_{\beta} = \{P_{\beta}, p_{\beta+1}, \cdots\}, (\beta = 1, 2, \cdots)$, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.

(a) When p is a point of R, $p \in \tilde{A}_{\beta}$ for all β .

(b) A point p is an r-cluster point of $\{p_{\alpha}\}$.

Proof. Let $\{V_{\alpha}(p)\}$ be an arbitrary fundamental sequence of neighborhoods of p. Since $p \in \tilde{A}_{\beta}$, we have $V_{\alpha}(p) \cap A_{\beta} \neq \phi$ for all β . Therefore, $\{p_{\alpha}\}$ is frequently in each neighborhood $V_{\alpha}(p)$. Hence p is an *r*-cluster point of $\{p_{\alpha}\}$.

The example of Remark 1 shows that the converse is not always true. For example, let p_{α} be z_{α} in the example of Remark 1, then the *r*-cluster point *p* of the sequence $\{p_{\alpha}\}$ does not belong to \tilde{A}_{β} for all β .

Proposition 7. If R is a ranked space, then the conditions below are related as follows. For all spaces the condition (a) implies the condition (b), but the converse is not always true.

(a) If quasi r-closures \tilde{B}_{α} of subsets B_{α} ($\alpha = 1, 2, \cdots$) in R are non-empty subsets of R and $\tilde{B}_1 \supseteq \tilde{B}_2 \supseteq \cdots \supset \tilde{B}_{\alpha} \supseteq \cdots$, then $\cap \tilde{B}_{\alpha} \neq \phi$.

(b) R is a sequentially compact set.

Proof. Let $\{p_{\alpha}\}$ be an arbitrary sequence of R and $B_{\alpha} = \{p_{\alpha}, p_{\alpha+1}, \dots\}$, $(\alpha = 1, 2, \dots)$. We have $\tilde{B}_1 \supseteq \tilde{B}_2 \supseteq \cdots \supseteq \tilde{B}_{\alpha} \supseteq \cdots$ and $\tilde{B}_{\alpha} \neq \phi$. Consequently, by the hypothesis there exists a point p such that $p \in \tilde{B}_{\alpha}$ for all α . By Proposition 6, p is an r-cluster point of $\{p_{\alpha}\}$. Hence R is a sequentially compact set.

The following example shows that the converse is not always true.

Let us consider the ranked space E of Example 2 [2]. Let $R = \{z_n\} \cup \{p\}$, and $U = R \cap V$, where V is a neighborhood of a point in E. If the rank of U is defined to be that of V, R becomes a ranked space. Then R is a sequentially compact set. However, if we suppose that $B_{\alpha} = \{Z_{\alpha}, z_{\alpha+1}, \cdots\}, (\alpha = 1, 2, \cdots)$, the condition (a) is not satisfied.

Proposition 8. If R is a ranked space, then the following conditions are equivalent.

- (a) If B_{α} are non-empty r-closed subsets of R, and $B_1 \supseteq B_2$ $\supseteq \cdots \supseteq B_{\alpha} \supseteq \cdots$, then $\cap B_{\alpha} \neq \phi$.
- (b) R is a sequentially compact set.
- **Proof.** First we will prove that (a) implies (b).
- Since B_{α} is an *r*-closed subset, $B_{\alpha} = \tilde{B}_{\alpha}$. Therefore, by Proposition 7, *R* is a sequentially compact set.

Next we will prove that (b) implies (a).

Since $B_{\alpha} \neq \phi$ there exists a sequence $\{p_{\alpha}\}$ such that $p_{\alpha} \in B_{\alpha}$ for all α . Suppose that $C_{\alpha} = \{p_{\alpha}, p_{\alpha+1}, \cdots\}$ $(\alpha = 1, 2, \cdots)$. Since R is a sequentially compact set, $\{p_{\alpha}\}$ has an r-cluster point p. By Proposition 5, $p \in \overline{C}_{\alpha}$ $(\alpha = 1, 2, \cdots)$. Noting that B_{α} is an r-closed subset of R, $\overline{B}_{\alpha} = B_{\alpha}$. Hence $p \in B_{\alpha}$ for all α . Consequently, $\cap B_{\alpha} \neq \phi$.

References

- [1] K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).
- [2] —: Sur la méthode des espaces rangés. II. Proc. Japan Acad., 42, 549-554 (1966).
- [3] K. Yajima, Y. Sakamoto, and H. Nagashima: On the sets of points in the ranked space. Proc. Japan Acad., 43, 941-945 (1967).
- [4] Y. Sakamoto, H. Nagashima, and K. Yajima: On Compactness in ranked spaces. Proc. Japan Acad., 43, 946-948 (1967).
- [5] Y. Yoshida: Compactness in ranked spaces. Proc. Japan Acad., 44, 69-72 (1968).
- [6] H. Nagashima, K. Yajima, and Y. Sakamoto: On the sets of points in the ranked space. II. Proc. Japan Acad., 44, 788-791 (1968).

No. 8]