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1. Introduction. Let K and L be finite CW-complexes and let
f" KL be a cellular map. If f is a homotopy equivalence, the
Whitehead torsion v(f) e Wh() is defined, where Wh() is the White-
head group of the fundamental group of L (for the definitions, see
Milnor [2]).

Whitehead has proved in [4] that K and L are of the same simple
homotopy type iff there is a homotopy equivalence f" K-L such that
v(f)--O.

In 1965, Kwun and Szczarba proved two theorems for Whitehead
torsion [1]; one is the Sum Theorem, and the other the Product
Theorem. The Sum Theorem is stated as follows.

Theorem Io Let X and Y be finite cell complexes which are the
union of subcomplexes X=X X, Y-Y [3 Y, and Xo, Yo the intersec-
tion Xo=XfqX, Yo-Yfq Y. Let f" X--.Y be a cellular map and

f lX=f" X-Y (i=0, 1, 2). If f are homotopy equivalences and Xo
is connected and simply connected, then f is a homotopy equivalence
and
( 1 ) r(f) i.r(f) +/..r(f),
where ]." Wh(I(Y,))-Wh (7:1(Y)) are induced by the inclusion maps.

In this paper we shall consider the case when X0 is non-simply
connected. Then we obtain the following result which is a generaliza-

tion of Theorem I.
Theorem I’. Let X, Y be finite CW-complexes which are the

union of subcomplexes X=X [J X, Y- Y [J Y. Put Xo-X1 X, Yo
=Y Y. Let f" X-Y be a cellular map and f,--f lX,’Xi-Y, be
homotopy equivalences (i-0, 1, 2). If Xo is connected, then f is a
homotopy equivalence and

( 2 ) r(f) ].r(f) + ],r(f0 ]0.r(f0),
where ]" Y,-Y are inclusions.

In particular, if X0 is simply connected, then v(f0)=0 and hence
we get formula (1) from formula (2).

Next, the Product Theorem in [1] reads as follows.
Theorem II. If C is an acyclic based A-complex and C’ a based

B-complex, then v(C(R)C’)-z(C’)i.r(C), where z(C’) is the Euler
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characteristic of C’ and i,’KI(A)KI(A(R)zB) is induced by the map
aa(R)l.

J. Milnor defined in [2] the torsion or non-acyclic based complexes.
We attempt to calculate the torsion v(C(R)C) when C, C are not nec-
essarily acyclic. We say here that a finite complex C is a based A-
complex if Cq, Hq(C) are free A-modules with prefered bases and
Bq(C)-Cq+ is also free.

Theorem II. If C is a based A-complex and C’ a based B-com-
plex, then C(R)zC’ is a based A(R)B-complex and

r(C(R)C’)- z(C)],(C’) + z(C’)i.r(C),
where the map ]" BA(R),B is defined by ](b)= l(R)b, and i as above.

2. Proof of Theorem I’. In this paper, we use the results of
Milnor’s paper [2] and his notations. Spaces are connected finite CW-
complexes and maps are cellular maps. We shall first prove the fol-
lowing theorem.

Theorem 1. Let f" X--.Y be a homotopy equivalence and let X’
X [J qD, Y’- Y (3 ]qD, where g" )X. Define f’" X’
f,f’l int D=identity. Then f is a homotopy equivalence and v(f’)

=h.v(f), where h" Y-Y’ is the inclusion.
Proof. It is obvious that f’ is a homotopy equivalence. Let

]" Z[Yr(X)]Z[(X’)] be the ring homomorphism induced by the inclu-
sion map and let p’MM, p"M,-M], be the universal coverings
of the mapping cylinders of f, f’. Put p-(X)-f, p’-(X’)=)’.
There is a natural map p"’M]p’-(M]) such that p’p"-p, p" in-
duces a simple isomorphism

Z[uI(X’)](R)C(M], X)- C(p’-(M] [3 X’), X).
Since each component of Mx,--p’-(M(3X’) is simply connected,

we have
v(C(/]],, ’))- v(C(/],, p’-(M] [J X))) + v(C(p’-(M

=v(C(P’-(Mx [3 X’), X))
=].r(C(M, X)).

Therefore v(f’)-f.r(C(2I,, ’)) -f.3,r(C( f, )) h.r(f)
Corollary. Let f" X--Y be a homotopy equivalence and let g be

maps g" )-oX. Define
Df’ X U D--.Y fDU fD

f!by f’ X:f f’ int D--identity. Then is a homotopy equivalence
and r(f’)=h.r(f), where h is the inclusion.

Proof. This is proved by induction on r.
Theorem 2. If the inclusion map Xo-oX induces a monomorphism

rI(Xo)-.(X), then Theorem I’ holds.
Lemma 1. Under the same condition as Theorem 2,

1 (Xo)-I(X) (i= 1, 2),
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( 2 ) r(X)o(X) (i-1, 2),
are monomorphisms.

Proof. (1) is trivial. (X) is an amalgamated product of the
amily {(X), (X0)ou(X)}, hence u(X)-(X) are monomorphisms
(A. G. Kurosch, Theory of groups, 35, Chelsea, 1960).

Let L be a subcomplex of a complex K and p" KK be a universal
covering o K. Let L be one of the components of p-(L).

Lemma 2. If (L)(K) is a monomorphism, then p’=p L" L
L is a universal covering of L.

Proof. It is sufficient to show that L is simply connected. But
this is an immediate consequence of the covering homotopy property.

Proof of Theorem 2. The homotopy equivalence is easily proved.
Let p’M]M] be the universal covering of the mapping cylinder

of f. Since the exact sequence

OC(p-(Mo), p-(Xo))LC(p-(M), p-(X))C(p-(Mf), p-(X))

ic(, p-(x))o,
where (c)=(c, c), (c, c)-c-c:, is compatible or the prefered
bases, we have

v(C(p-(Mx), p-(X))) + v(C(p-(Mx:), p-(X:)))
=v(C(p-(Mxo), p-(Xo))) + v(C(Mx, p-(X))).

We have to prove f,v(C(p-I(Mx), p-(X)))-].v(f) for i=O, 1, 2.
Let x be one of the components of p-(Mx). Since (Mx)

(Mx) is a monomorphism, p=px"]M is a universal
covering. Let h’Z[(X)]Z[(X)] be a homomorphism induced by
the inclusion. Then

C(p-(Mf), p-(X)) Z[(X)]C(M, p[(X))
is simple isomorphic. Since f.h.-].f.,

f,r(C(p-(M), p-(X)))=f,h.r(C(Mx, p;(X))
].f.r(C(Mx, p;(X))) ].(f).

This completes the proof.
Proof of Theorem I’. Let g" DXo, i-1 .., r be representa-

tions or generators of Ker (=(X0)(X)) and let k’XoX be in-
clusions. Put X, Y (i=0, 1, 2) as X-XDu qD, Y

D and X’ Y’Y, O ,,D[U U x,,a, -X X, Y U Y. Define

f"XY, f" X’Y’ as similarly defined in the corollary of Theorem
1. Clearly X’, Y’, X, Y, f’, f satisfy the conditions of Theorem 2.
Hence

.t
T " Tr(f’)- ],r(Y) +, (Y) 0, (f0),

where ]" YY’ are inclusions. Let h" YY’ be the inclusion. By
],r(f)- h,],r(f) (i O, , 2).Corollary to Theorem 1, v(f’) h,v(f), "

Thereore
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h.r(f)- h.(].v(f) / ]:.r(fi.) ]o.r(fo)).
Since fkgO, where k" Xo-.X is the inclusion, (Y)-h(Y’) is an
isomorphism and so is h.’Wh((Y))Wh((Y’)). Hence the
Theorem I’ holds.. Proof of Theorem II’. If X is a free A-module and Y a free
B-module with bases x-(x,..., x) and y-(y,..., y) respectively,
then X@Y is a free A@B-module with base x@y=(x@y, x@y,
.., x@y), and if A-B, direct sum XY is a free A-module with

base xy-(x, ..., y).
Lemma . Let u, u’, uu: be three bases for free A-module X and

v, v’, vv be those for free B-module Y. Then
1 ) [uv/uv’]-(X)].[v / v’],

( 2 ) [u@v/u’@v]-(Y)i.[u/u’],
3 ) [(uv)(uv)/u(vv)]-O,

( 4 [(uv)(uv) /(uu)v] O,
where i., ]. are the same as in Introduction and (G)-(the minimum

of the number of generators of G).
Proof. If u-(u,...,u), v-(v,...,v), v’-(v’,...,v’) and

v- x,v’, x, e B, then u@vq- (l@xq,)u@v’. Let T be a
ss matrix such that (T),-l@x,. Then

uv/uv’--

hence [u@v/u@v’]--r[T]-- (X)].[v / v’].
(2) is proved similarly and (3), (4) are permutations of bases.
Proof of Theorem II’. Let cq, hq be the prefered bases o Cq,

Hq(C) and c, h be those of C’. By the Kfinneth formula, C@C’ is a
based A@B-complex with prefered bases (Co@dq)(c@c_)...(cq@cg),
(ho@h)(h@h’q_)... (hq@hg). Let C’ be the form_

.CO.
We proceed by induction on p-q.

If p-q=O, then (C@C’)-C_@C’, H(C@C’)-H_(C)@H(C’),
having the bases e_@e’, h_@h. Choose a base b o B-OC+ or
each r. We can choose a base b_@e o B(C@C’) for each r. By
Lemma 3,

[(b@c)(h@h’q)(b_@c) / c@c’q]
[(b@c)(h@c)(b_@c’) / c@c’q] + [h@h/h@c]

=(C)i.[bhb_/c] + (H(C))j.[h’q/ c].
Therefore

v(C@C’) (-1)q+(q(C)i.[bhb_/c] + (H(C))].[h / c’]}
(-- 1)qa(C)i. (-1)[bhb_/c]

+((-1)(H(C))}].(- 1)q[h’q c’q]
z(C)j.r(C’) + z(C’)i.r(C).
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t__When p-q>1, let D, D’ be the chain complexes C 0 and C
--. ...--*C/-0. Then H(D)-C, H/(D’)-C//B/ are free.
(B’_ is free and 0--.Z’ B,.C./Z,.B,._O splits, hence C,./B’,.IB,C,I
H,.@B,._.) Let x, y be their bases. Since the other bases are in-
duced from those of C’, we can regard D, D’ as the based B-complexes.
The exact sequence

OC(R)D-->C(R)C’C(R)D’---.O
is compatible with respect to these prefered bases. Denote the ho-
mology sequence induced by the above sequence by d(. By Milnor [2,
Theorem 3.2] and by the assumption of induction,
v(C(R)C’)- v(C(R)D) + v(C(R)D’) + v(,_()

z(C)],v(D) + z(D)i,v(C) + z(C)],v(D’) + Z(D’)i,z’(C) +
Z(C)],(r(D) + r(D’)) + z(C’)i,r(C) + r(d().

A tedious but not difficult calculation shows that
r(d()- z(C)].(- 1)q{[bh;/ x] h’+1b’ / y]}.

On the other hand,
r(C’)-- r(D)-- r(D’)- .,(-- 1)*[bhb_l/c]- (- 1)q[x/c’]

-1) [b,h,b,_i/c,]-(-1)q a+ly/ca+x]E,--+( ’’ +1[b’
=--1){[bh/c’] [b+lh+lbq/c+] [x/c’]+[b+ly/c+l]}

(__l)q +{[bh/x]- [h’ xb’/y]}
Therefore r(C(R)C’)- z(C)].v(C’)- z(Cgi.r(C)-O.
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