206. Generalized Product and Sum Theorems for Whitehead Torsion

By Hiroshi Hosokawa

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1968)

1. Introduction. Let K and L be finite CW-complexes and let $f: K \rightarrow L$ be a cellular map. If f is a homotopy equivalence, the Whitehead torsion $\tau(f) \in \operatorname{Wh}(\pi)$ is defined, where $\operatorname{Wh}(\pi)$ is the Whitehead group of the fundamental group π of L (for the definitions, see Milnor [2]).

Whitehead has proved in [4] that K and L are of the same simple homotopy type iff there is a homotopy equivalence $f: K \rightarrow L$ such that $\tau(f) = 0$.

In 1965, Kwun and Szczarba proved two theorems for Whitehead torsion [1]; one is the Sum Theorem, and the other the Product Theorem. The Sum Theorem is stated as follows.

Theorem I. Let X and Y be finite cell complexes which are the union of subcomplexes $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, and X_0 , Y_0 the intersection $X_0 = X_1 \cap X_2$, $Y_0 = Y_1 \cap Y_2$. Let $f: X \rightarrow Y$ be a cellular map and $f \mid X_i = f_i: X_i \rightarrow Y_i$ (i = 0, 1, 2). If f_i are homotopy equivalences and X_0 is connected and simply connected, then f is a homotopy equivalence and

(1)
$$\tau(f) = j_{1*}\tau(f_1) + j_{2*}\tau(f_2),$$

where j_{i*} : Wh $(\pi_1(Y_i)) \rightarrow \text{Wh}(\pi_1(Y))$ are induced by the inclusion maps.

In this paper we shall consider the case when X_0 is non-simply connected. Then we obtain the following result which is a generalization of Theorem I.

Theorem I'. Let X, Y be finite CW-complexes which are the union of subcomplexes $X=X_1\cup X_2$, $Y=Y_1\cup Y_2$. Put $X_0=X_1\cap X_2$, $Y_0=Y_1\cap Y_2$. Let $f:X\to Y$ be a cellular map and $f_i=f|X_i:X_i\to Y_i$ be homotopy equivalences (i=0,1,2). If X_0 is connected, then f is a homotopy equivalence and

(2)
$$\tau(f) = j_{1*}\tau(f_1) + j_{2*}\tau(f_2) - j_{0*}\tau(f_0),$$

where $j_i: Y_i \rightarrow Y$ are inclusions.

In particular, if X_0 is simply connected, then $\tau(f_0)=0$ and hence we get formula (1) from formula (2).

Next, the Product Theorem in [1] reads as follows.

Theorem II. If C is an acyclic based A-complex and C' a based B-complex, then $\tau(C \otimes_z C') = \chi(C') i_* \tau(C)$, where $\chi(C')$ is the Euler

characteristic of C' and $i_*: \bar{K}_1(A) \rightarrow \bar{K}_1(A \otimes_z B)$ is induced by the map $a \rightarrow a \otimes 1$.

J. Milnor defined in [2] the torsion for non-acyclic based complexes. We attempt to calculate the torsion $\tau(C \otimes_z C')$ when C, C' are not necessarily acyclic. We say here that a finite complex C is a based Acomplex if C_q , $H_q(C)$ are free A-modules with prefered bases and $B_q(C) = \partial C_{q+1}$ is also free.

Theorem II'. If C is a based A-complex and C' a based B-complex, then $C \otimes_z C'$ is a based $A \otimes_z B$ -complex and

$$\tau(C \otimes_z C') = \chi(C) j_* \tau(C') + \chi(C') i_* \tau(C),$$

where the map $j: B \rightarrow A \otimes_z B$ is defined by $j(b) = 1 \otimes b$, and i as above.

2. Proof of Theorem I'. In this paper, we use the results of Milnor's paper [2] and his notations. Spaces are connected finite CW-complexes and maps are cellular maps. We shall first prove the following theorem.

Theorem 1. Let $f: X \rightarrow Y$ be a homotopy equivalence and let $X' = X \cup_g D^2$, $Y' = Y \cup_{fg} D^2$, where $g: \dot{D}^2 \rightarrow X$. Define $f': X' \rightarrow Y'$ by $f' \mid X = f, f' \mid \text{int } D^2 = identity$. Then f' is a homotopy equivalence and $\tau(f') = h_*\tau(f)$, where $h: Y \rightarrow Y'$ is the inclusion.

Proof. It is obvious that f' is a homotopy equivalence. Let $j: Z[\pi_1(X)] \to Z[\pi_1(X')]$ be the ring homomorphism induced by the inclusion map and let $p: \tilde{M}_f \to M_f, \ p': \tilde{M}_{f'} \to M_{f'}$ be the universal coverings of the mapping cylinders of f, f'. Put $p^{-1}(X) = \tilde{X}, \ p'^{-1}(X') = \tilde{X}'$. There is a natural map $p'': \tilde{M}_f \to p'^{-1}(M_f)$ such that p'p'' = p. p'' induces a simple isomorphism

$$Z[\pi_1(X')] \otimes_j C(\tilde{M}_f, \tilde{X}) \cong C(p'^{-1}(M_f \cup X'), \tilde{X}').$$

Since each component of $\tilde{M}_{f'} - p'^{\text{--}}(M_f \cup X')$ is simply connected, we have

$$\begin{split} \tau(C(\tilde{M}_{f'},\,\tilde{X}')) &= \tau(C(\tilde{M}_{f'},\,p'^{-1}(M_f \cup X'))) + \tau(C(p'^{-1}(M_f \cup X'),\,\tilde{X}')) \\ &= \tau(C(p'^{-1}(M_f \cup X'),\,\tilde{X}')) \\ &= j_*\tau(C(\tilde{M}_f,\,\tilde{X})). \end{split}$$

Therefore $\tau(f') = f'_* \tau(C(\tilde{M}_{f'}, \tilde{X}')) = f'_* j_* \tau(C(\tilde{M}_f, \tilde{X})) = h_* \tau(f)$.

Corollary. Let $f: X \rightarrow Y$ be a homotopy equivalence and let g_i be maps $g_i: \dot{D}_i^2 \rightarrow X$. Define

$$f': X \cup_{g_1} D_1^2 \cup \cdots \cup_{g_r} D_r^2 \longrightarrow Y \cup_{fg_1} D_1^2 \cup \cdots \cup_{fg_r} D_r^2$$

by f'|X=f, f'| int $D_i^2=identity$. Then f' is a homotopy equivalence and $\tau(f')=h_*\tau(f)$, where h is the inclusion.

Proof. This is proved by induction on r.

Theorem 2. If the inclusion map $X_0 \rightarrow X$ induces a monomorphism $\pi_1(X_0) \rightarrow \pi_1(X)$, then Theorem I' holds.

Lemma 1. Under the same condition as Theorem 2,

(1)
$$\pi_1(X_0) \rightarrow \pi_1(X_i)$$
 (i=1, 2),

(2)
$$\pi_1(X_i) \to \pi_1(X)$$
 (i=1, 2),

are monomorphisms.

Proof. (1) is trivial. $\pi_1(X)$ is an amalgamated product of the family $\{\pi_1(X_i), \pi_1(X_0) \rightarrow \pi_1(X_i)\}$, hence $\pi_1(X_i) \rightarrow \pi_1(X)$ are monomorphisms (A. G. Kurosch, Theory of groups, § 35, Chelsea, 1960).

Let L be a subcomplex of a complex K and $p: \tilde{K} \to K$ be a universal covering of K. Let \tilde{L} be one of the components of $p^{-1}(L)$.

Lemma 2. If $\pi_1(L) \rightarrow \pi_1(K)$ is a monomorphism, then $p' = p \mid \tilde{L} : \tilde{L} \rightarrow L$ is a universal covering of L.

Proof. It is sufficient to show that \tilde{L} is simply connected. But this is an immediate consequence of the covering homotopy property.

Proof of Theorem 2. The homotopy equivalence is easily proved. Let $p: \tilde{M}_f \rightarrow M_f$ be the universal covering of the mapping cylinder of f. Since the exact sequence

$$0 \to C(p^{-1}(M_{f_0}), p^{-1}(X_0)) \xrightarrow{\varphi} C(p^{-1}(M_{f_1}), p^{-1}(X_1)) \oplus C(p^{-1}(M_{f_2}), p^{-1}(X_2))$$
$$\xrightarrow{\psi} C(\tilde{M}_f, p^{-1}(X)) \to 0,$$

where $\varphi(c)=(c,c)$, $\psi(c_1,c_2)=c_1-c_2$, is compatible for the prefered bases, we have

$$\begin{split} &\tau(C(p^{-1}(M_{f_1}),\;p^{-1}(X_1))) + \tau(C(p^{-1}(M_{f_2}),\;p^{-1}(X_2))) \\ &= \tau(C(p^{-1}(M_{f_0}),\;p^{-1}(X_0))) + \tau(C(\tilde{M}_f,\;p^{-1}(X))). \end{split}$$

We have to prove $f_*\tau(C(p^{-1}(M_{f_i}), p^{-1}(X_i))) = j_{i*}\tau(f_i)$ for i = 0, 1, 2.

Let \tilde{M}_{f_i} be one of the components of $p^{-1}(M_{f_i})$. Since $\pi_1(M_{f_i}) \to \pi_1(M_f)$ is a monomorphism, $p_i = p \mid \tilde{M}_{f_i} : \tilde{M}_{f_i} \to M_{f_i}$ is a universal covering. Let $h_i : Z[\pi_1(X_i)] \to Z[\pi_1(X)]$ be a homomorphism induced by the inclusion. Then

$$C(p^{-1}(M_{f_i}), p^{-1}(X_i)) \cong Z[\pi_1(X)] \otimes_{h_i} C(\tilde{M}_{f_i}, p_i^{-1}(X_i))$$

is simple isomorphic. Since $f_*h_{i*}=j_{i*}f_{i*}$,

$$\begin{split} f_*\tau(C(p^{-1}(M_{f_i}),\,p^{-1}(X_i))) &= f_*h_{i*}\tau(C(\tilde{M}_{f_i},\,p_i^{-1}(X_i)) \\ &= j_{i*}f_{i*}\tau(C(\tilde{M}_{f_i},\,p_i^{-1}(X_i))) = j_{i*}(f_i). \end{split}$$

This completes the proof.

Proof of Theorem I'. Let $g_i: \dot{D}_i^2 \to X_0, \ i=1, \cdots, r$ be representations for generators of $\operatorname{Ker}(\pi_1(X_0) \to \pi_1(X))$ and let $k_i: X_0 \to X_i$ be inclusions. Put X_i' , Y_i' (i=0,1,2) as $X_i' = X_i \cup_{k_i g_1} D_1^2 \cup \cdots \cup_{k_i g_r} D_r^2$, $Y_i' = Y_i \cup_{f_i k_i g_1} D_1^2 \cup \cdots \cup_{f_i k_i g_r} D_r^2$ and $X' = X_1' \cup X_2'$, $Y' = Y_1' \cup Y_2'$. Define $f_i': X_i' \to Y_i'$, $f': X' \to Y'$ as similarly defined in the corollary of Theorem 1. Clearly X', Y', X_i' , Y', Y_i' , f', satisfy the conditions of Theorem 2. Hence

$$\tau(f') = j'_{1*}\tau(f'_{1}) + j'_{2*}\tau(f'_{2}) - j'_{0*}\tau(f'_{0}),$$

where $j_i': Y_i' \to Y'$ are inclusions. Let $h: Y \to Y'$ be the inclusion. By Corollary to Theorem 1, $\tau(f') = h_* \tau(f)$, $j_{i^*}' \tau(f_i') = h_* j_{i^*} \tau(f_i)$ (i=0, 1, 2). Therefore

$$h_*\tau(f) = h_*(j_{1*}\tau(f_1) + j_{2*}\tau(f_2) - j_{0*}\tau(f_0)).$$

Since $fkg_i \simeq 0$, where $k: X_0 \to X$ is the inclusion, $\pi_1(Y) \to \pi_1(Y')$ is an isomorphism and so is $h_*: \operatorname{Wh}(\pi_1(Y)) \to \operatorname{Wh}(\pi_1(Y'))$. Hence the Theorem I' holds.

3. Proof of Theorem II'. If X is a free A-module and Y a free B-module with bases $x=(x^1, \dots, x^r)$ and $y=(y^1, \dots, y^s)$ respectively, then $X \otimes_z Y$ is a free $A \otimes_z B$ -module with base $x \otimes y = (x^1 \otimes y^1, x^1 \otimes y^2, \dots, x^r \otimes y^s)$, and if A = B, direct sum $X \oplus Y$ is a free A-module with base $xy = (x^1, \dots, y^s)$.

Lemma 3. Let u, u', u_1u_2 be three bases for free A-module X and v, v', v_1v_2 be those for free B-module Y. Then

- $[u \otimes v/u \otimes v'] = \alpha(X)j_*[v/v'],$
- $[u \otimes v/u' \otimes v] = \alpha(Y)i_*[u/u'],$
- $[(u \otimes v_1)(u \otimes v_2)/u \otimes (v_1 v_2)] = 0,$
- $[(u_1 \otimes v)(u_2 \otimes v)/(u_1 u_2) \otimes v] = 0,$

where i_* , j_* are the same as in Introduction and $\alpha(G) = (\text{the minimum of the number of generators of } G)$.

Proof. If $u=(u^1, \cdots, u^r)$, $v=(v^1, \cdots, v^s)$, $v'=(v'^1, \cdots, v'^s)$ and $v^k=\sum_j x_{k,j}v'^j$, $x_{k,j}\in B$, then $u^p\otimes v^q=\sum_j (1\otimes x_{q,j})u^p\otimes v'^j$. Let T be a $s\times s$ matrix such that $(T)_{i,j}=1\otimes x_{i,j}$. Then

$$u \otimes v/u \otimes v' = \begin{pmatrix} T & T & & & 0 \\ 0 & & \cdot & T \end{pmatrix}$$
,

hence $[u \otimes v/u \otimes v'] = r[T] = \alpha(X)j_*[v/v']$.

(2) is proved similarly and (3), (4) are permutations of bases.

Proof of Theorem II'. Let c_q , h_q be the prefered bases of C_q , $H_q(C)$ and c_q' , h_q' be those of C'. By the Künneth formula, $C \otimes_z C'$ is a based $A \otimes_z B$ -complex with prefered bases $(c_0 \otimes c_q')(c_1 \otimes c_{q-1}') \cdots (c_q \otimes c_0')$, $(h_0 \otimes h_q')(h_1 \otimes h_{q-1}') \cdots (h_q \otimes h_0')$. Let C' be the form

$$C'_{p} \rightarrow C'_{p-1} \rightarrow \cdots \rightarrow C'_{q} \rightarrow 0.$$

We proceed by induction on p-q.

If p-q=0, then $(C\otimes C')_i=C_{i-q}\otimes C'_q$, $H_i(C\otimes C')=H_{i-q}(C)\otimes H_q(C')$, having the bases $c_{i-q}\otimes c'_q$, $h_{i-q}\otimes h'_q$. Choose a base b_r of $B_r=\partial C_{r+1}$ for each r. We can choose a base $b_{i-q}\otimes c'_q$ of $B_i(C\otimes C')$ for each r. By Lemma 3,

$$\begin{split} &[(b_r \otimes c_q')(h_r \otimes h_q')(b_{r-1} \otimes c_q')/c_r \otimes c_q'] \\ &= [(b_r \otimes c_q')(h_r \otimes c_q')(b_{r-1} \otimes c_q')/c_r \otimes c_q'] + [h_r \otimes h_q'/h_r \otimes c_q'] \\ &= \alpha(C_q')i_*[b_r h_r b_{r-1}/c_r] + \alpha(H_r(C))j_*[h_q'/c_q']. \end{split}$$

Therefore

$$\begin{split} \tau(C \otimes C') &= \sum_{r} (-1)^{q+r} \{ \alpha(C'_q) i_* [b_r h_r b_{r-1}/c_r] + \alpha(H_r(C)) j_* [h'_q/c'_q] \} \\ &= (-1)^q \alpha(C'_q) i_* \sum_{r} (-1)^r [b_r h_r b_{r-1}/c_r] \\ &+ \{ \sum_{r} (-1)^r \alpha(H_r(C)) \} j_* (-1)^q [h'_q/c'_q] \\ &= \chi(C) j_* \tau(C') + \chi(C') i_* \tau(C). \end{split}$$

When $p-q \ge 1$, let D, D' be the chain complexes $C'_q \to 0$ and $C'_p \to C'_{p-1} \to \cdots \to C'_{q+1} \to 0$. Then $H_q(D) \cong C'_q$, $H_{q+1}(D') \cong C'_{q+1}/B'_{q+1}$ are free. $(B'_{r-1}$ is free and $0 \to Z'_r/B'_r \to C'_r/B'_r \to C'_r/Z'_r \cong B'_{r-1} \to 0$ splits, hence $C'_r/B'_r \cong H'_r \oplus B'_{r-1}$.) Let x, y be their bases. Since the other bases are induced from those of C', we can regard D, D' as the based B-complexes. The exact sequence

$$0 \rightarrow C \otimes D \rightarrow C \otimes C' \rightarrow C \otimes D' \rightarrow 0$$

is compatible with respect to these preferred bases. Denote the homology sequence induced by the above sequence by \mathcal{H} . By Milnor [2, Theorem 3.2] and by the assumption of induction.

$$\begin{split} \tau(C\otimes C') &= \tau(C\otimes D) + \tau(C\otimes D') + \tau(\mathcal{H}) \\ &= \chi(C)j_*\tau(D) + \chi(D)i_*\tau(C) + \chi(C)j_*\tau(D') + \chi(D')i_*\tau(C) + \tau(\mathcal{H}) \\ &= \chi(C)j_*(\tau(D) + \tau(D')) + \chi(C')i_*\tau(C) + \tau(\mathcal{H}). \end{split}$$

A tedious but not difficult calculation shows that

$$\tau(\mathcal{H}) = \chi(C)j_*(-1)^q \{ [b'_q h'_q / x] - [h'_{q+1} b'_q / y] \}.$$

On the other hand,

$$\begin{split} \tau(C') - \tau(D) - \tau(D') &= \sum_i (-1)^i [b_i' h_i' b_{i-1}' / c_i'] - (-1)^q [x / c_q'] \\ &- \sum_{i=q+2}^p (-1)^i [b_i' h_i' b_{i-1}' / c_i'] - (-1)^{q+1} [b_{q+1}' y / c_{q+1}'] \\ &= (-1)^q \{ [b_q' h_q' / c_q'] - [b_{q+1}' h_{q+1}' b_q' / c_{q+1}'] - [x / c_q'] + [b_{q+1}' y / c_{q+1}'] \} \\ &= (-1)^q \{ [b_q' h_q' / x] - [h_{q+1}' b_q' / y] \}. \end{split}$$

Therefore $\tau(C \otimes C') - \gamma(C) j_* \tau(C') - \gamma(C') i_* \tau(C) = 0$.

References

- [1] K. W. Kwun and R. H. Szczarba: Product and sum theorems for Whitehead torsion. Ann. of Math., 82, 183-190 (1965).
- [2] J. Milnor: Whitehead torsion. Bull. Amer. Math. Soc., 72, 358-426 (1966).
- [3] J. H. C. Whitehead: Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc., 45 (2), 243-327 (1939).
- [4] —: Simple homotopy types. Amer. Jour. Math., 72, 1-57 (1950).