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206. Generalized Product and Sum Theorems
for Whitehead Torsion

By Hiroshi HOSOKAWA
(Comm. by Kinjiré KUNUGI, M. J.A., Nov. 12, 1968)

1. Introduction. Let K and L be finite CW-complexes and let
f:K—L be a cellular map. If f is a homotopy equivalence, the
Whitehead torsion 7(f) e Wh(r) is defined, where Wh () is the White-
head group of the fundamental group m of L (for the definitions, see
Milnor [2]).

Whitehead has proved in [4] that K and L are of the same simple
homotopy type iff there is a homotopy equivalence f : K—L such that
(f)=0.

In 1965, Kwun and Szczarba proved two theorems for Whitehead
torsion [1]; one is the Sum Theorem, and the other the Product
Theorem. The Sum Theorem is stated as follows.

Theorem I. Let X and Y be finite cell complexes which are the
union of subcomplexes X=X, UX,, Y=Y,UY,, and X,, Y, the intersec-
tion X,=X,NX,, Y.=Y,NY, Let f:X->Y be a cellular map and
f1Xi=f;: X;—Y, =0,1,2). If f, are homotopy equivalences and X,
18 connected and simply connected, then f is a homotopy equivalence
and
(1) () =Jut(fD) +Iut(fD,
where . Wh(m,(Y,)—-Wh(z(Y)) are induced by the inclusion maps.

In this paper we shall consider the case when X, is non-simply
connected. Then we obtain the following result which is a generaliza-
tion of Theorem I.

Theorem I’ Let X, Y be finite CW-complexes which are the
union of subcomplexes X=X, UX,, Y=Y,UY, Put X,.=X,nX,, Y,
=Y,NY, Let f:X->Y be a cellular map and f;=f|X,: X;—Y, be
homotopy equivalences (1=0,1,2). If X, is connected, then f is a
homotopy equivalence and
(2) () =7ut(fD + 17 f) —Jut (S0,
where §,: Y,—Y are inclusions.

In particular, if X, is simply connected, then 7z(f;)=0 and hence
we get formula (1) from formula (2).

Next, the Product Theorem in [1] reads as follows.

Theorem II. If C is an acyclic based A-complex and C’ a based
B-complex, then t(CQ®,C)=yx(C)i,t(C), where x(C") is the Euler
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characteristic of C' and i, : K,(A)—K,(A®,B) is induced by the map
a—+a®1.

J. Milnor defined in [2] the torsion for non-acyclic based complexes.
We attempt to calculate the torsion 7(C®,C’) when C, C’ are not nec-
essarily acyclic. We say here that a finite complex C is a based A-
complex if C,, H,(C) are free A-modules with prefered bases and
B,(0)=0C,,, is also free.

Theorem II'.  If C is a based A-complex and C’ o based B-com-
plex, then CR,C’ is a based AQ,B-complex and

7(C®,C") = (C)j47(C) 4 x(C)iyr(O),
where the map j: B—~AQ,B is defined by j(b)=1®b, and i as above.

2. Proof of Theorem I’. In this paper, we use the results of
Milnor’s paper [2] and his notations. Spaces are connected finite CW-
complexes and maps are cellular maps. We shall first prove the fol-
lowing theorem.

Theorem 1. Let f:X—Y be a homotopy equivalence and let X’
=XUu,D? Y=YU,D?, where g: D>>X. Define f': X'-Y' by f'|X
=f,f'|int D*=identity. Then f’is a homotopy equivalence and t(f’)
=h,t(f), where h: Y—Y’ is the inclusion.

Proof. It is obvious that s’ is a homotopy equivalence. Let
7 Zln(X)]—Z[7,(X")] be the ring homomorphism induced by the inclu-
sion map and let p: M,—~M,, p': M, —M, be the universal coverings
of the mapping cylinders of f, f’. Put p'(X)=X, - (X)=X".
There is a natural map p”: M s—p'"(M,) such that p’p”=p. p” in-
duces a simple isomorphism

ZIm(X)IR®,C(M ,, X)=C(p'-*(M, U X"), X).

Since each component of M ="M ;U X’ is simply connected,
we have

©(CUL ., X)) =7(CU ., p'~ (M, U X)) +7(CO' (M, U X)), X))

=7(Cw (M, X)), X))
=5, e(CQ, X)).
Therefore (") = f4,c(C(M ., X)) = flixt(CUM ;, X)) =h,z(f).

Corollary. Let f: X—Y be a homotopy equivalence and let g, be
maps ¢ : D':j—»X . Define

S XUmeU U UarDz_’YUmeiU tee UfOrpf*
by f/| X=f, f'|int Di=identity. Then f’ is & homotopy equivalence
and 7(f)=h,7(f), where h is the inclusion.

Proof. This is proved by induction on 7.

Theorem 2. If the inclusion map X,—X induces a monomorphism
7 (X)—m(X), then Theorem I’ holds.

Lemma 1. Under the same condition as Theorem 2,

(1) 77:1(Xo)"‘"771(Xi) (i=1’ 2) ’



912 H. H0oSOKAWA [Vol. 44,

(2) 1, (X)) - (X) (t=1,2),
are monomorphisms.

Proof. (1) is trivial. =m,(X) is an amalgamated product of the
family {z,(X,), 7, (X)) —r,(X))}, hence 7,(X,)—r,(X) are monomorphisms
(A. G. Kurosch, Theory of groups, § 35, Chelsea, 1960).

Let L be a subcomplex of a complex K and p : K—K be a universal
covering of K. Let L be one of the components of p~*(L).

Lemma 2. If m,(L)—n,(K) is & monomorphism, then p'=p|L: L
—L 18 a universal covering of L.

Proof. It is sufficient to show that L is simply connected. But
this is an immediate consequence of the covering homotopy property.

Proof of Theorem 2. The homotopy equivalence is easily proved.

Let p: M 7—M, be the universal covering of the mapping cylinder
of f. Since the exact sequence

0—Cp=(M,), p~ (XN 5Cp~(M,,), p (X NSC(p~(M,,), p™(X,)

L0, p=1(X)—0,
where ¢(c)=(c, ¢), ¢(c,, ¢)=c,—c¢,, is compatible for the prefered
bases, we have
(Cp™ (M), p~ (X)) +(C(p~ (M), p~H(X)
=7(Clp~"(M,,), p~ (X)) +(C(M;, p~H(X))).
We have to prove f,z(C(p~*(M,,), p" (X)) =Jix7(f) for =0, 1, 2.

Let M,, be one of the components of p~(M,). Since m,(M,,)
—m,(M,) is a monomorphism, p,=p|M,,: M, —M,, is a universal
covering. Let A, : Z[n(X,)1—Z[m,(X)] be a homomorphism induced by
the inclusion. Then

Clp(M,), p (X)) = ZIn(X)]®,,C(M ,,, p7(X))
is simple isomorphic. Since fol=7u fir
Fxt(C™ (M ), p~ X)) = fihuwt(CU 1, pi (X))
=Ju [T (C(M 5,y 07X D)) =G fD)-
This completes the proof.

Proof of Theorem I'. Let g,: D}—X,, i=1, -- -, r be representa-
tions for generators of Ker (r,(X,)—m,(X)) and let k,: X,—X, be in-
clusions. Put X, Y, (1=0,1,2) as X;=X,U 4,0, DU -+ Uy, D% Y
=Y, U pini0DiU -+ - U pige,Di and X'=X{UX;, Y=Y UY; Define
[i: X[=Y,, f7: X’-Y’ as similarly defined in the corollary of Theorem
1. Clearly X/, Y/, X}, Y., 1/, f} satisfy the conditions of Theorem 2.
Hence

(=7 (fD+int(f) — et (D),
where 7} : Y,—Y’ are inclusions. Let 2:Y—Y’ be the inclusion. By
Corollary to Theorem 1, 7(f)="hyt(f), jut(fD)=hyjur(f) (=0, 1, 2).
Therefore
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by () =Ry (Gt (fD) + a7 (f) — Tt (S))-
Since fkg,~0, where k: X,—X is the inclusion, 7,(Y)—m,(Y") is an
isomorphism and so is k,:Wh (@ (Y)—-»Wh(z(Y"). Hence the
Theorem I’ holds.

3. Proof of Theorem II'. If X is a free A-module and Y a free
B-module with bases z=(«', ---, 27) and y=(", - - -, ¥°) respectively,
then X®.,Y is a free A®,B-module with base *Qy=(2'Qy*, ¥'®¥?, - - -
coo, 2"QyY), and if A=DB, direct sum X®Y is a free A-module with
base xy=(a', - - -, ¥°).

Lemma 3. Let u, w, w,u, be three bases for free A-module X and
v, v, v,v, be those for free B-module Y. Then

(1) [u®v | u@v']=a(X)j [v/v'],
(2) [u®v /v @v]I=a(Y)i,[u/uw],
(3) [(uv)(UQv,) | u®(v,v,)]=0,
(4) [(%, @) (U,Qv) [ (u,u) Qv] =0,

where iy, j,. are the same as in Introduction and a(G)=(the minimum
of the number of generators of G).

Proof. If u=@t, ..., u"), v=>" ..., v, v'=@" ..., v and
V=372, ", 4,,€ B, then u?@Qvi=7],1Qx, Ju*®v?. Let T be a
8 X s matrix such that (T); ;=1®w; ;. Then

Tr o
0 T

hence [u®v/uQv'1=7[T1=a(X)j[v/v'].

(2) is proved similarly and (8), (4) are permutations of bases.

Proof of Theorem II'. Let ¢,, h, be the prefered bases of C,,
H,(C) and cg, ky be those of C’. By the Kiinneth formula, C®,C’ is a
based A®,B-complex with prefered bases (¢,®c,)(c,®c;_,)- - -(c,Rcp),
(R @h) (R QW _)- - - (h,Rhy). Let C’ be the form

c,—Cy_y—- - -—C—0.
We proceed by induction on p—q.

If p—q=0, then (C®RC(C");=C;_&C;, H,(CRC)=H,;_(C)RXH,(C"),
having the bases ¢;_,®c,, h;,_,®h,. Choose a base b, of B,=0dC,,, for
each r. We can choose a base b,_,®c, of B,(C®C’) for each . By
Lemma 3,

URV [ URv' =

[(0,Qc)(h,®h)(b,_,Rcy) ] e,Rcy]
=[(0,R¢c)(h,Rcy)(b,_,Rc) [ ¢, Qcy]+ [h,Rhy/ h,Rcq]
= a(CYiylb, 1D, e 1+ a(H(C)j 1,/ ).

Therefore

T(CRC) = X (— D) {a(CLiglb,h,b, o e, 1+ al(H (C)iyIh, | ¢}
=(—1)%@(C)iy 5 (—1)Ib, kb, /¢,]
+H{Z(—=Dra(H (CN}i(—DUhy/ c;l
= 1(C)j47(C) + 2(C)iy(C).
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When p—q=1, let D, D’ be the chain complexes C;—0 and C),
—Cy_y— -+ —C,,—0. Then H(D)=Cy, H,,,(D)=C,.,/By,, are free.
(B;_, is free and 0—Z;,/B,—C,|B,—C,|Z;=B,_,—0 splits, hence C,/B,
=H,®B,_,.) Let z, y be their bases. Since the other bases are in-
duced from those of C’, we can regard D, D’ as the based B-complexes.
The exact sequence

0—-CQD—-CRC'—-CRD’'—0
is compatible with respect to these prefered bases. Denote the ho-
mology sequence induced by the above sequence by 4. By Milnor [2,
Theorem 3.2] and by the assumption of induction,
7(CRC)=1(CRD)+ (CRD’) + ()
=x(C)j 47 (D) + x(D)iy7(C) + x(C)j v (D") + % (D)iyv(C) + ()
= 1(O)j (D) + (D) + 3(C")iy7(C) + 7(I().
A tedious but not difficult calculation shows that
(H) = 1(C)j (—DY[bhy ) x1—[hy, b, Y1}
On the other hand,
7(C)—1t(D)—7(D")= Y ,(—DUbshib;_, [ ci]—(—D)[x/c,]
DI A G VA L AR A B G D LA T
= (= Db}k, 1= [0 il i) il — [z €1+ D)y €al)
= (= DY[byR, | ] — [, 10 91}
Therefore 7(CRC") — x(C)j47(C) — x(C")i r(C)=0.
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