9. Local Knots of 2-Spheres in 4-Manifolds

By Shin'ichi Suzuki
Department of Mathematics, Kōbe University
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 13, 1969)

Throughout this paper we will only be concerned from the combinatorial point of veiw. By $\left(f M^{2} \subset M^{4}\right)$ we denote a pair of manifolds such that M^{4} is a triangulated oriented 4-dimensional manifold and $f M^{2}$ is a properly embedded oriented 2-dimensional manifold as a subcomplex in M^{4} and f is a piesewise linear embedding of M^{2} in M^{4}.

We measure the local knot type* of the embedding f at an interior point x of M^{2} as follows, [1], [3]. Let $\operatorname{St}\left(f x, M^{4}\right)$ and $\operatorname{St}\left(x, M^{2}\right)$ denote the closed star neighborhoods of $f x$ in M^{4} and x in M^{2} respectively. The boundary** $S^{3}=\partial \operatorname{St}\left(f x, M^{4}\right)$ of $\operatorname{St}\left(f x, M^{4}\right)$ is a 3 -sphere with an orientation inherited from that of M^{4}, and the boundary $S^{1}=\partial \operatorname{St}\left(x, M^{2}\right)$ is a 1 -sphere with an orientation inherited from that of M^{2}. The oriented knot type (denote $\kappa(x)$) of the embedding of $f S^{1}$ in S^{3} is called the local knot type of the embedding f at x. When $\kappa(x)$ is of trivial type, we may say that the local knot type is O or that $f M^{2}$ is locally flat (unknotted) at $f x$. A 2-manifold $f M^{2}$ is called locally flat if it is locally flat at each of its points. When $\kappa(x)$ is of non-trivial type, we may say that $f M^{2}$ is locally knotted at $f x$ or that $f x$ is locally knotted point of $f M^{2}$.

Of course the local knot type can also be measured at a boundary point $x \in \partial M^{2}$. In this case $\operatorname{cl}\left(\partial \operatorname{St}\left(f x ; M^{4}\right) \cap \mathcal{I} M^{4}\right)$ and $\operatorname{cl}\left(\partial \operatorname{St}\left(x, M^{2}\right) \cap \mathcal{I} M^{2}\right)$ are 3-cell and 1-cell respectively and the local knot type is a type of (1, 3)-cell pair. In this paper we shall consider only embeddings whose boundary points are all locally flat (unknotted).

Since a locally knotted point must be a vertex in any triangulation of the pair ($f M^{2} \subset M^{4}$) the locally knotted points are always isolated. If M^{2} is compact, there can be only a finite number of locally knotted points.
R. H. Fox and J. W. Milnor observed "Under which condition can a given collection of knot types $\kappa_{1}, \cdots, \kappa_{n}$ be the set of local knot types of some embedding of a 2 -sphere S^{2} in the 4 -space R^{4} ?" and defined the slice knot types and showed that a collection $\kappa_{1}, \cdots, \kappa_{n}$ of knot types can occur as the collection of local knot types of a 2 -sphere

[^0]in 4 -space if and only if $\kappa_{1}+\cdots+\kappa_{n}$ is the type of a slice knot.
By the unique decomposition theorem of the knot [5], this problem is reduced to the following: Which knot types can occur as the only local knot type of a 2 -sphere $f S^{2}$ in R^{4} ? The purpose of the paper is to study the following problem: Which knot types κ can occur as the only local knot type of a 2 -sphere $f S^{2}$ in some kinds of 4-manifold M^{4} ?

Let $K\left(f S^{2} \subset M^{4}\right)$ be the set of knot types which can occur as the only one local knot type of a pair $\left(f S^{2} \subset M^{4}\right)$. Then we now state our version of Fox-Milnor's theorem.

Theorem 0. $K\left(f S^{2} \subset R^{4}\right)=K\left(f S^{2} \subset S^{4}\right)=K\left(f S^{2} \subset D^{4}\right)=\{$ slice knot types\}, where R^{4}, S^{4}, and D^{4} are 4-space, 4-sphere and 4-cell respectively.

Moreover, since $S^{1} \times D^{3}, S^{2} \times D^{2}$, and $S^{1} \times S^{1} \times D^{2}$ are realizable in $R^{4}\left(\right.$ or $\left.S^{4}, D^{4}\right)$ we have:

Theorem $0^{\prime} . \quad K\left(f S^{2} \subset S^{1} \times D^{3}\right)=K\left(f S^{2} \subset S^{2} \times D^{2}\right)$
$=K\left(f S^{2} \subset S^{1} \times S^{1} \times D^{2}\right)$
$=\{$ slice knot types $\}$.
The following will be established in $\S 2$.
Theorem 1. $K\left(f S^{2}\left(S^{2} \times S^{2}\right)=\{\right.$ all knot types $\}$.
§1. Application of Fox-Milnor's Theorem. We apply the Fox-Milnor's Theorem to study $K\left(f S^{2} \subset S^{1} \times S^{1} \times S^{1} \times S^{1}\right)$ and $K\left(f S^{2} \subset\right.$ $S^{1} \times S^{1} \times S^{2}$), where $S^{1} \times S^{1} \times S^{1} \times S^{1}$ and $S^{1} \times S^{1} \times S^{2}$ are not realizable in R^{4}. The universal covering spaces of $S^{1} \times S^{1} \times S^{1} \times S^{1}$ and $S^{1} \times S^{1} \times S^{2}$ are $R^{1} \times R^{1} \times R^{1} \times R^{1}$ and $R^{1} \times R^{1} \times S^{2}$ respectively. While $R^{1} \times R^{1} \times R^{1}$ $\times R^{1}$ and $R^{1} \times R^{1} \times S^{2}$ are homeomorphic to R^{4} and $\mathscr{J}\left(D^{2} \times S^{2}\right)$ respectively. Thus as an immediate consequence of Theorem 0 and Theorem 0^{\prime} we have:

Theorem $0^{\prime \prime} . \quad K\left(f S^{2} \subset S^{1} \times S^{1} \times S^{1} \times S^{1}\right)$
$=K\left(f S^{2} \subset R^{1} \times R^{1} \times S^{2}\right)$
$=K\left(f S^{2} \subset S^{1} \times S^{1} \times S^{2}\right)$
$=\{$ slice knot types $\}$.
Moreover, since the universal covering space of any lens space L is the 3 -sphere S^{3}, similarly we have:

Theorem $0^{\prime \prime \prime}$. For every lens space L,

$$
\begin{aligned}
K\left(f S^{2} \subset L \times R^{1}\right) & =K\left(f S^{2} \subset L \times D^{1}\right) \\
& =K\left(f S^{2} \subset L \times S^{1}\right) \\
& =\{\text { slice knot types }\} .
\end{aligned}
$$

§2. Proof of Theorem 1. We shall need the following elementary lemma, due to H. Terasaka [6].

Lemma 1. Let $u(\kappa)(\geq 1)$ be the unknotting number*** of a knot type k. Then there is a representative k of κ as follows. Let ***) Überschneidungszahl, see K. Reidemeister [4], p. 17.

Fig. 1.
$c_{0}, c_{1}, \cdots, c_{u(k)}$ be $u(\kappa)+1$ unknotted oriented circles in S^{3} such that c_{i} is once linked with c_{0} and c_{i}, c_{j} are unlinked, $i, j=1, \cdots, u(\kappa)$, as shown in Fig. 1. Let $B_{1}, \cdots, B_{u(s)}$ be mutually disjoint $u(\kappa)$ narrow bands (2-cells) in S^{3} such that B_{i} spans (α pair of small subarcs $a_{0 i}$ and a_{i} of) c_{0} and c_{i} respectively, and

$$
\begin{aligned}
B_{i} \cap\left(c_{0} \cup c_{1} \cup \cdots \cup c_{u(k)}\right) & =\partial B_{i} \cap\left(c_{0} \cup c_{i}\right) \\
& =a_{0 i} \cup a_{i}, \quad i=1, \cdots, u(\kappa) .
\end{aligned}
$$

Then

$$
\begin{aligned}
k= & c_{0} \cup c_{1} \cup \cdots \cup c_{u(k)} \cup \partial B_{1} \cup \cdots \cup \partial B_{u(k)} \\
& -\left(a_{01} \cup a_{1}\right)-\cdots-\left(a_{0, u(s)} \cup a_{u(k)}\right) .
\end{aligned}
$$

We will call this representative k the canonical.
〈Sketch proof.〉 From the definition of unknotting number of the knot, there must be a representative k^{\prime} of κ such that if we exchange $u(\kappa)$ crossings of the regular projection of k^{\prime} we have a trivial knot c_{0}^{\prime}. Now, we can consider that the exchanging of a crossing must be done as illustrated in Fig. 2. So we have $u(\kappa)$ small circles

Fig. 2.
$c_{1}^{\prime}, \cdots, c_{u(k)}^{\prime}$ and $u(\kappa)$ bands $B_{1}^{\prime}, \cdots, B_{u(\kappa)}^{\prime}$ to c_{0}^{\prime} such that c_{i}^{\prime} is once linked with c_{0}^{\prime} and $c_{i}^{\prime}, c_{j}^{\prime}$ are unlinked and B_{i}^{\prime} spans c_{i}^{\prime} to c_{0}^{\prime} (at small subarcs α_{i}^{\prime} to $\left.\alpha_{0 i}^{\prime}\right), i, j=1, \cdots, u(\kappa)$, and

$$
\begin{aligned}
k^{\prime}= & c_{0}^{\prime} \cup c_{1}^{\prime} \cup \cdots \cup c_{u(k)}^{\prime} \cup \partial B_{1}^{\prime} \cup \cdots \cup \partial B_{u(s)}^{\prime} \\
& -\left(a_{01}^{\prime} \cup a_{1}^{\prime}\right)-\cdots-\left(a_{0, u(s)}^{\prime} \cup a_{u(s)}^{\prime}\right) .
\end{aligned}
$$

Thus, by deforming k^{\prime} isotopically into the standard position we have the canonical representative k of κ.

Remark 1. The local knot types of immersion g can be defined by the same way as embedding, that is the oriented knot type of $g\left(\partial \operatorname{St}\left(x, M^{2}\right)\right)$ in $\partial \operatorname{St}\left(g x, M^{4}\right)$. Then this lemma says that for every knot $k \subset S^{3}=\partial D^{4}$ there is a locally flat immersed 2-cell $D^{2} \subset D^{4}$ such that
$\mathscr{J} D^{2} \subset \mathcal{I} D^{4}$ and $k=\partial D^{2} \subset S^{3}$. In fact, we have D^{2} by joining $c_{1} \cdots, c_{n}$ and c_{0} in Fig. 1 to $n+1$ points that are chosen suitably in $\mathscr{I} D^{4}$. So, for any differentiable 4 -manifold M^{4}, every homotopy class $\xi \in \pi_{2}\left(M^{4}\right)$ of maps $S^{2} \rightarrow M^{4}$ is representable by a differentiably immersed 2 -sphere.

〈Proof of Theorem 1〉. To complete the proof, it is sufficient to show that for any given knot type κ there exists a pair ($f S^{2} \subset S^{2} \times S^{2}$) having the only one local knot of type κ.

To distinguish between these two 2-spheres of $S^{2} \times S^{2}$ let's denote one of them by S_{1}^{2} and the other S_{2}^{2}. We select a 2 -cell D_{i}^{2} in $S_{i}^{2}(i=1,2)$, and take the 4 -cell $N=D_{1}^{2} \times D_{2}^{2}$ in $S_{1}^{2} \times S_{2}^{2}$. In the 3 -sphere $S^{3}=\partial N$ $=\partial\left(D_{1}^{2} \times D_{2}^{2}\right)$ we set the canonical representative

$$
\begin{aligned}
k= & c_{0} \cup c_{1} \cup \cdots \cup c_{u(k)} \cup \partial B_{1} \cup \cdots \cup \partial B_{u(k)}-\left(a_{01} \cup a_{1}\right) \\
& -\cdots-\left(a_{0, u(k)} \cup a_{u(k)}\right)
\end{aligned}
$$

of κ by Lemma 1 , where $u(\kappa)$ is the unknotting number of κ, such that $c_{0} \subset \partial D_{1}^{2} \times D_{2}^{2}$ and $c_{1} \cup \cdots \cup c_{u(k)} \subset$ $D_{1}^{2} \times \partial D_{2}^{2}$. Since $\operatorname{cl}\left(S_{i}^{2}-D_{i}^{2}\right)$ is also locally flat 2 -cell in $\operatorname{cl}\left(S_{1}^{2} \times S_{2}^{2}-N\right)$, it is easily checked that there are mutually disjoint locally flat 2cells $C_{0}^{2}, C_{1}^{2}, \cdots, C_{u(x)}^{2}$ in $\operatorname{cl}\left(S_{1}^{2} \times S_{2}^{2}\right.$ $-N)$ such that $\partial C_{i}^{2}=c_{i}, i=0,1$, $\cdots u(\kappa)$. Thus we have a locally flat 2-cell $C_{0}^{2} \cup B_{1} \cup C_{1}^{2} \cup \cdots \cup B_{u(k)}$ $\cup C_{u(x)}^{2}$ in $\operatorname{cl}\left(S_{1}^{2} \times S_{2}^{2}-N\right) \quad$ which

Fig. 3. bounds the knot k.

On the otherhand, we choose a vertex v in $\mathcal{I N}$. Then the join $v * k$ is a 2 -cell in N and it has a locally knotted point v. The surface $(v * k) \cup\left(C_{0}^{2} \cup B_{1} \cup C_{1}^{2} \cup \cdots \cup B_{u(x)} \cup C_{u(x)}^{2}\right)$
is a 2 -sphere combinatorially embedded in $S_{1}^{2} \times S_{2}^{2}$ and it has only local knot type κ at v.

This completes the proof.
M. A. Kervaire and J. W. Milnor observed 2 -spheres in $P C(2)$ in [2. p. 1654]. Now, by Lemma 1 and some elementary geometrical examinations we can state our version of their studies.

Theorem 2.

$$
K\left(f S^{2} \subset P C(2)\right) \supset\left\{\begin{array}{l}
\text { slice knot types, } \\
\langle(n, n+1) \text {-torus knot types }\rangle, \\
\left\langle\text { knot types of unknotting number } \frac{n(n-1)}{2}\right\rangle
\end{array}\right\},
$$

where $\langle>$ denotes the cobordism class of knot types in the sense of [1].
But we can't know that $K\left(f S^{2} \subset P C(2)\right) \neq\{$ all knot types $\}$. Thus, the following is still open. Are there 4 -manifolds M^{4} such that $K\left(f S^{2} \subset M^{4}\right) \neq\{$ slice knot types $\}$ nor $\{$ all knot types\}?

References

[1] R. H. Fox and J. W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math., 3, 257-267 (1966).
[2] M. A. Kervaire and J. W. Milnor: On 2-spheres in 4-manifolds. Proc. Nat. Acad. Sci. U.S.A., 47, 1651-1657 (1961).
[3] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds. Topology, 5, 203-213 (1966).
[4] K. Reidemeister: Knotentheorie. Berlin (1932).
[5] H. Schubert: Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. Sitzungsber. Akad. Wiss. Heidelberg, math.-nat. Kl., 3. Abh., 57-104 (1949).
[6] H. Terasaka: Musubime no hanashi (in Japanese). Sūrikagaku (Mathematical Sciences), 2, No. 11 (1964).

[^0]: *) R. H. Fox and J. W. Milnor called it the local singularity [1], but as it is confused with the self-intersection (socalled singularity) we'll use this terminology.
 **) $\partial=$ boundary, $\mathcal{I}=$ interior, cl=closure.

