30. A Note on Radicals of Ideals in Nonassociative Rings

By Hidetoshi MARUBAYASHI^{*)} and Kentaro MURATA^{**)}

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1969)

Let R be a nonassociative ring and let $\mathfrak{A} = \{u = \mathfrak{P}_n^{(\nu)}\}\$ be the set of all formal nonassociative products.¹⁾ In [3], Brown-McCoy has defined that an ideal²⁾ P is a u-prime ideal, if whenever $u(A_1, \dots, A_n)$ is contained in P for ideals A_i of R, then at least one of the ideals A_i is contained in P. We shall generalize this concept as follows: Let \mathfrak{U} be any fixed subset of \mathfrak{A} . An ideal P is said to be \mathfrak{U} -ideal if whenever $\Sigma_{\mathfrak{P}_n^{(\nu)}} \in \mathfrak{U} \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \dots, A_{\nu n})$ is contained in P, where Σ denotes the restricted sum and $A_{\nu i}$ are ideals, then $A_{\nu i}$ is contained in P for some ν , i. It is the aim of this paper to investigate \mathfrak{U} -ideals and to present some related results.

In section 1, 11-systems are defined by analogy with *m*-systems introduced in [4]. If A is an ideal of R, a 11-radical $\mathfrak{U}(A)$ of the ideal A is defined to be the set of all elements r of R with the property that every 11-system which contains an element of A. We shall prove that $\mathfrak{U}(A)$ is the intersection of all 11-ideals which contains A. Section 2 lays definitions of 11*-ideals and 11*-radicals of ideals which are analogous to those of *u**-prime ideals and *u**-radicals of ideals in [3]. We shall show that always $\mathfrak{U}(A) = \mathfrak{U}^*(A)$ under the assumption that 11 is a finite subset of \mathfrak{A} , where $\mathfrak{U}^*(A)$ is the 11*-radical of an ideal A. In the fininal section we define a 11-radical of the ring R, which is denoted by $\mathfrak{U}(R)$, as the one of the zero ideal of R, and show that $\mathfrak{U}(R)$ has the usual properties expected of a radical. Moreover we shall show that $\mathfrak{U}(R_n) = (\mathfrak{U}(R))_n$, where R_n and $(\mathfrak{U}(R))_n$ are the total matric rings of order n with coefficients in R and $\mathfrak{U}(R)$ respectively.

1. U-ideals and U-radicals.

Throughout this paper, we let \mathfrak{l} be any fixed subset of \mathfrak{A} . The principal ideal generated by an element a of R will be denoted by (a). The complement of an ideal in R will be denoted by C(A).

Lemma 1. Let P be an ideal of R. Then the following three conditions are equivalent:

⁽i) P is a \mathfrak{U} -ideal.

^{*)} Osaka University.

^{**)} Yamaguchi University.

¹⁾ Following Behrens [1, 2], we shall denote by $\mathfrak{P}_n^{(\nu)}(A_1, \dots, A_n)$ a fixed type ν of the product of ideals A_1, \dots, A_n in R.

²⁾ The word "ideal" will always mean a "two-sided ideal."

(ii) $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \dots, A_{\nu n}) \cap C(P)$ is non-void,³⁾ if $C(P) \cap A_{\nu i}$ are non-void for all ν and i, where $A_{\nu i}$ are ideals of R.

(iii) $\Sigma \mathfrak{P}_n^{(\nu)}((a_{\nu 1}), \dots, (a_{\nu n})) \cap C(P)$ is non-void, if $a_{\nu i} \in C(P)$ for all ν and *i*.

Definition 1. A subset M of R is a \mathfrak{U} -system, if $A_{\nu i}$ are ideals of R, each of which meets M, then $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \dots, A_{\nu n})$ meets M.

Clearly an ideal P of R is a U-ideal if and only if C(P) is a U-system. Suppose that $u \in \mathbb{1}$, then a u-prime ideal in the sense of [3] is a U-ideal. But the converse need not be true. For, let R be the algebra in the example 1 of [3]. If we put $\mathfrak{U} = \{u, u'\}$, where $u(x_1, x_2, x_3) = (x_1x_2)x_3$ and $u'(x_1, x_2, x_3) = x_1(x_2x_3)$, then (0) is u'-prime. Hence (0) is U-prime. However (0) is not u-prime.

Theorem 1. Let M be a \mathfrak{U} -system in R, and A an ideal which does not meet M. Then A is contained in an ideal P which is maximal in the class of ideals which do not meet M. The ideal P is necessarily a \mathfrak{U} -ideal.

Proof. The existence of P follows at once from Zorn's lemma. We now show that P is a \mathfrak{U} -ideal. Suppose that $A_{\nu i}$ is not contained in P, then the maximal property of P implies that each of the ideals $P+A_{\nu i}$ meets M. By Definition 1 it follows that $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}+P, \cdots, A_{\nu n}+P)$ meets M. But clearly we have that $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}+P, \cdots, A_{\nu n}+P)$ $\subseteq P+\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \cdots, A_{\nu n})$. Since P does not meet M, $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \cdots, A_{\nu n})$ is not contained in P, and hence $\Sigma \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \cdots, A_{\nu n})$ meets C(P). By Lemma 1, this shows that P is a \mathfrak{U} -ideal.

Definition 2. If A is an ideal of R, the \mathfrak{U} -radical $\mathfrak{U}(A)$ of A is the set of all elements r of R such that every \mathfrak{U} -system which contains r meets A.

Theorem 2. If A is an ideal of R, $\mathfrak{U}(A)$ is the intersection of all \mathfrak{U} -ideals, each of which contains A.

Proof. Clearly A is contained in $\mathfrak{U}(A)$. Furthermore, A and $\mathfrak{U}(A)$ are contained in the same \mathfrak{U} -ideals. For, suppose that $A_{\nu i}$ is contained in P, where P is a \mathfrak{U} -ideals, and that $r \in \mathfrak{U}(A)$. If r is not in P, then C(P) must contain an element of A, since C(P) is a \mathfrak{U} -system. But clearly $C(P) \cap A$ is void. Thus $r \in P$ and hence $\mathfrak{U}(A)$ is contained in P as desired. This shows that $\mathfrak{U}(A)$ is contained in the intersection of all the \mathfrak{U} -ideals, each of which contains A. To prove the converse inclusion, let a be an element of R, but not in $\mathfrak{U}(A)$. Then by the definition of $\mathfrak{U}(A)$, there exists a \mathfrak{U} -system M which contains a but does not meet A. By Theorem 1, there exists a \mathfrak{U} -ideal containing A which does not meet M, and therefore does not contain a. Hence a can not be in the intersection of all \mathfrak{U} -ideals containing A.

³⁾ The symbol " Σ " will always mean the restricted sum $\Sigma_{\mathfrak{B}_{n}^{(\nu)} \in \mathfrak{U}}$.

Corollary. The U-radical of an ideal is an ideal.

2. Equivalence of \mathbb{I} -radical and \mathbb{I}^* -radical.

Throughout this section, let \mathfrak{U} be a finite subset of $\mathfrak{A}:\mathfrak{U} = \{\mathfrak{P}_{n(\mathfrak{U})}^{(o(1))}, \dots, \mathfrak{P}_{n(\mathfrak{m})}^{(o(\mathfrak{m}))}\}$ and put $k=n(1)+\dots+n(m)$. We set $\mathfrak{U}^*((x)) = \sum_{i=1}^m \mathfrak{P}_{n(\mathfrak{U})}^{(o(i))}((x), \dots, (x))$, for all $x \in R$. Then, we can define a \mathfrak{U}^* -ideal and the \mathfrak{U}^* -radical $\mathfrak{U}^*(A)$ of an ideal A, which are analogous to the \mathfrak{U} -ideal and the \mathfrak{U} -radical of A, respectively.

Lemma 2. If a is an element of a \mathfrak{U}^* -system M^* , then there exists a \mathfrak{U} -system M such that $a \in M \subseteq M^*$.

Proof. Let $M = \{a_1, a_2, \dots\}$, where $a_1 = a$ and the other elements of M are defined inductively as follows. Since $a_1 \in M^*$, $\mathfrak{U}^*((a_1))$ meets M^* . Let $a_2 \in \mathfrak{U}^*((a_1)) \cap M^*$. Then let, in general, $a_k \in \mathfrak{U}^*((a_{k-1})) \cap M^*$. We can prove that M is a \mathfrak{U} -system. Let $a_{i(1)}, \dots, a_{i(k)} \in M$ and assume that i(k) is the maximal number in $\{i(1), \dots, i(k)\}$. Then we have $a_{i(k+1)} \in \mathfrak{U}^*((a_{i(k)})) = \sum_{i=1}^m \mathfrak{P}_{n(i)}^{\omega(i)}((a_{i(k)}), \dots, (a_{i(k)})) \subseteq \mathfrak{P}_{n(1)}^{\omega(1)}((a_{i(1)}), \dots, (a_{i(n(1))})) + \dots + \mathfrak{P}_{n(m)}^{\omega(m)}((a_{i(n(1))} + \dots + n(m-1)) + 1), \dots, (a_{i(k)}))$. Hence Mis a \mathfrak{U} -system containing a.

Theorem 3. If A is an ideal of R, then $\mathfrak{U}(A) = \mathfrak{U}^*(A)$.

Proof. Clearly a \mathfrak{U} -ideal is a \mathfrak{U}^* -ideal, and hence we have $\mathfrak{U}^*(A) \subseteq \mathfrak{U}(A)$. The converse inclusion is immediate by Lemma 2.

Corollary. If A is an ideal of R, then $A = \mathfrak{U}^*(A)$ if and only if A is an intersection of \mathfrak{U} -ideals.

3. The U-radical of a ring.

Definition 3. The \mathfrak{U} -radical of a ring R is the \mathfrak{U} -radical of the zero ideal in the ring R. In symbol: $\mathfrak{U}(R)$.

Definition 4. An element a of a ring is *nilpotent* if $u(a, \dots, a) = 0$ for some $u \in \mathfrak{A}$. An ideal is a *nil ideal* if each of its element is nilpotent.

For each $u \in \mathfrak{U}$, an *u*-prime ideal is a \mathfrak{U} -ideal. Hence the *u*-radical N_u of the ring R in the sense of [3] contains $\mathfrak{U}(R)$. By §5 in [3], N_u is a nil ideal of R. Hence the \mathfrak{U} -radical $\mathfrak{U}(R)$ of the ring R is also a nil ideal of R.

Definition 5. A ring R is said to be a \mathfrak{U} -ring if and only if (0) is a \mathfrak{U} -ideal of R.

If P is a \mathfrak{U} -ideal, then R/P is a \mathfrak{U} -ring and conversely. Since $\mathfrak{U}(R)$ is the intersection of all the \mathfrak{U} -ideals of R, by the similar methods as in Theorems 5 and 6 of [4], we have the following two theorems.

Theorem 4. If $\mathfrak{U}(r)$ is the \mathfrak{U} -radical of R, $R/\mathfrak{U}(R)$ has the zero \mathfrak{U} -radical.

Theorem 5. A necessary and sufficient condition that a ring be isomorphic to a subdirect sum of \mathfrak{U} -rings is that it has zero \mathfrak{U} -radical.

Lemma 3. Let S be an over ring of a ring R. If each ideal of

R is also an ideal of S, then $\mathfrak{U}(R) = \mathfrak{U}(S) \cap R$.

Proof. It is easily shown that if P is a \mathfrak{U} -ideal of S, then P R is a \mathfrak{U} -ideal of R. Hence we have that $\mathfrak{U}(R) \subseteq \mathfrak{U}(S) \cap R$ by Theorem 2. The converse inclusion is immediate, because a \mathfrak{U} -system in R is a \mathfrak{U} -system in S.

If R is a ring, we shall denote by R_n the ring of all matrices of order n with coordinates in R.

Theorem 6. Let R be a ring with unit element. Then R is a \mathfrak{U} -ring if and only if R_n is a \mathfrak{U} -ring.

Proof. First we assume that R is not a \mathfrak{U} -ring. Suppose that $\Sigma\mathfrak{P}_n^{(\wp)}((a_1^{(\wp)}), \dots, (a_n^{(\wp)})) = 0$, where each $a_i^{(\wp)}$ is a nonzero element of R, then $\mathfrak{P}_n^{(\wp)}((a_1^{(\wp)}), \dots, (a_n^{(\wp)})) = 0$ for each $\mathfrak{P}_n^{(\wp)} \in \mathfrak{U}$. If e_{ik} is the matrix units in R_n , then by Lemma of [3], it follows that $\mathfrak{P}_n^{(\wp)}((a_1^{(\wp)}e_{11})), \dots, (a_n^{(\wp)}e_{11})) = 0$. Thus we see that R is not a \mathfrak{U} -ring. Conversely, suppose that R_n is not a \mathfrak{U} -ring and that $\mathfrak{S}\mathfrak{P}_n^{(\wp)}(a_1^{(\wp)}, \dots, a_n^{(\wp)}) = 0$, where each $A_i^{(\wp)}e_{11} \neq 0$ and therefore $\mathfrak{S}\mathfrak{P}_n^{(\wp)}((a_1^{(\wp)}e_{11}), \dots, (a_n^{(\wp)}e_{11})) = 0$. Thus we see that R is not a \mathfrak{U} -ring. Conversely, suppose that R_n is not a \mathfrak{U} -ring and that $\mathfrak{S}\mathfrak{P}_n^{(\wp)}(a_1^{(\wp)}, \dots, A_n^{(\wp)}) = 0$, where each $A_i^{(\wp)}$ is not a nonzero ideal of R_n , then $\mathfrak{P}_n^{(\wp)}(A_1^{(\wp)}, \dots, A_n^{(\wp)}) = 0$ for each $\mathfrak{P}_n^{(\omega)} \in \mathfrak{U}$. By Lemma of [3], there exist nonzero elements $a_1^{(\wp)}, \dots, a_n^{(\wp)}$ in R such that $\mathfrak{P}_n^{(\wp)}((a_1^{(\wp)}), \dots, (a_n^{(\wp)})) = 0$ for each $\mathfrak{P}_n^{(\wp)} \in \mathfrak{U}$. Hence $\mathfrak{S}\mathfrak{P}_n^{(\wp)}((a_1^{(\omega)}), \dots, (a_n^{(\wp)})) = 0$. This shows that R is not a \mathfrak{U} -ring.

Theorem 7. If R is any nonassociative ring, then $\mathfrak{U}(R_n) = (\mathfrak{U}(R))_n$. Proof. This is immediate by Lemma 3 and Theorem 6.

References

- [1] E. Behrens: Nichtassoziative Ringe. Math. Ann., 127, 441-452 (1954).
- [2] —: Zur additiven Idealtheorie in nichtassociative Ringen. Math. Zeitschr.,
 64, 169–182 (1956).
- [3] B. Brown and N. H. McCoy: Prime ideals in nonassociative rings. Trans. Amer. Math. Soc., 89, 245-255 (1958).
- [4] N. H. McCoy: Prime ideals in general rings. Amer. J. Math., 71, 823-833 (1949).