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30. A Note on Radicals of Ideals in Nonassociative Rings

By Hidetoshi MARUBAYASHI® and Kentaro MURATA**®
(Comm. by Kenjiro SHODA, M. J. A., March 12, 1969)

Let R be a nonassociative ring and let % ={u=R%} be the set of
all formal nonassociative products.” In [3], Brown-McCoy has defined
that an ideal? P is a u-prime ideal, if whenever u(4,, ---, 4,) is con-
tained in P for ideals A; of R, then at least one of the ideals A4, is
contained in P. We shall generalize this concept as follows: Let U
be any fixed subset of A. An ideal P is said to be N-ideal if whenever
Zpw e nPY(A,y, -+, A,n) is contained in P, where X denotes the re-
stricted sum and A,; are ideals, then A,; is contained in P for some
y, 1. It is the aim of this paper to investigate l-ideals and to present
some related results.

In section 1, U-systems are defined by analogy with m-systems
introduced in [4]. If A is an ideal of R, a U-radical 11(4) of the ideal
A is defined to be the set of all elements » of R with the property that
every U-system which contains an element of A. We shall prove that
11(4) is the intersection of all 11-ideals which contains A. Section 2
lays definitions of 11*-ideals and U*-radicals of ideals which are analo-
gous to those of w*-prime ideals and w*-radicals of ideals in [3]. We
shall show that always 11(4) =1*(4) under the assumption that Ul is a
finite subset of ¥, where 11*(4) is the U*-radical of an ideal A. In the
fininal section we define a U-radical of the ring R, which is denoted
by U(R), as the one of the zero ideal of R, and show that 11(R) has the
usual properties expected of a radical. Moreover we shall show that
NW(R,)=1U(R)),, where R, and (II(R)), are the total matric rings of or-
der n with coefficients in R and 1I(R) respectively.

1. U.ideals and U.radicals.

Throughout this paper, we let Il be any fixed subset of A. The
principal ideal generated by an element a of R will be denoted by (a).
The complement of an ideal in R will be denoted by C(A4).

Lemma 1. Let P be an ideal of R. Then the following three
conditions are equivalent:

(i) P is a U-ideal.
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(i) 2PI(A,, -, A,,)NCP) is non-void,” if C(P)NA,; are non-
void for all vy and i, where A,; are ideals of R.

(i) 2P a0, - -+, (@) NC(P) is non-void, if a,, € C(P) for all v
and 1.

Definition 1. A subset M of R is a U-system, if A,; are ideals of
R, each of which meets M, then R (4,, - -, 4,,) meets M.

Clearly an ideal P of R is a U-ideal if and only if C(P) is a U-sys-
tem. Suppose that u ¢ 1l, then a u-prime ideal in the sense of [3] is a
1-ideal. But the converse need not be true. For, let R be the algebra
in the example 1 of [3]. If we put U={u, w}, where u(x,, x,, ;)
=(x,2,)x, and w/'(x,, 2,, ;) =2,(2,%;), then (0) is w’-prime. Hence (0) is
U-prime. However (0) is not u-prime.

Theorem 1. Let M be a U-system in R, and A an ideal which
does not meet M. Then A is contained in an ideal P which is maximal
in the class of ideals which do not meet M. The ideal P is necessarily
a U-ideal.

Proof. The existence of P follows at once from Zorn’s lemma.
We now show that P is a ll-ideal. Suppose that A,; is not contained
in P, then the maximal property of P implies that each of the ideals
P+ A,, meets M. By Definition 1 it follows that B (4,,+P, - -,
A,.+ P) meets M. But clearly we have that Y$%(4,,+P, ---, A,,+P)
CP+IBP(A,, -, A,,). Since P does not meet M, IR (4,,, ---, 4,,)
is not contained in P, and hence YBY(4,, ---, 4,,) meets C(P). By
Lemma 1, this shows that P is a Ul-ideal.

Definition 2. If A is an ideal of R, the U-radical 11(A) of A is
the set of all elements 7 of R such that every 1l-system which contains
r meets A.

Theorem 2. If A is an ideal of R, 11(A) is the intersection of all
N-ideals, each of which contains A.

Proof. Clearly A is contained in 1I(4). Furthermore, A and
1(A) are contained in the same ll-ideals. For, suppose that A,; is con-
tained in P, where P is a ll-ideals, and that r ¢ 11(4). If r is not in P,
then C(P) must contain an element of A4, since C(P) is a ll-system.
But clearly C(P)N A is void. Thus r e P and hence 11(4) is contained
in P as desired. This shows that 11(A4) is contained in the intersection
of all the 1I-ideals, each of which contains A. To prove the converse
inclusion, let ¢ be an element of R, but not in 1(4). Then by the def-
inition of 1(A4), there exists a U-system M which contains ¢ but does
not meet A. By Theorem 1, there exists a 1l-ideal containing A which
does not meet M, and therefore does not contain a. Hence a¢ can not
be in the intersection of all U-ideals containing A.

3) The symbol “X?” will always mean the restricted sum 25‘32) e
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Corollary. The U-radical of an ideal is an ideal.

2. Equivalence of U-radical and U*.radical.

Throughout this section, let 11 be a finite subset of U:1U
={P& -+, B2&’} and put k=n@)+--.-+n(m). We set U*((x))
=27 B (), « - -, (@), for all xe R. Then, we can define a *-ideal
and the U*-radical 1*(A) of an ideal A, which are analogous to the 1I-
ideal and the U-radical of A, respectively.

Lemma 2. If a is an element of a U*-system M*, then there ex-
ists a N-system M such that a ¢ M M*.

Proof. Let M={a, a,, ---}, where a,=a and the other elements
of M are defined inductively as follows. Since a, ¢ M*, U1*((a,)) meets
M*. Let a,c 1*((a)) N M*. Then let, in general, a, € U*((a,_,)) N M*.
We can prove that M is a U-system. Let a;y, -, a;4y€ M and as-
sume that (k) is the maximal number in {i(1), - - -, i{(k)}. Then we
have  @; .1y € UF((@0)) =27 BEE (@i )5+« +5 (@00)) SBED (i) + -+
(a’i(n(l))))+ s +q3£:((;,nn)))((a/i(n(1)) 4+ Fnim—1))4-1), .-, (a/z(k)))o Hence M
is a U-system containing a.

Theorem 3. If A is an ideal of R, then 11(4)=11*(4).

Proof. Clearly a ll-ideal is a 1*-ideal, and hence we have 11*(4)
CU(A). The converse inclusion is immediate by Lemma 2.

Corollary. If A is an ideal of R, then A=1%*(A) if and only if A
is an intersection of U-ideals.

3. The U.radical of a ring.

Definition 3. The U-radical of a ring R is the U-radical of the
zero ideal in the ring R. In symbol: U(R).

Definition 4. An element a of a ring is nilpotent if u(a, - - -, a)
=0 for some u e A. An ideal is a nil ideal if each of its element is
nilpotent.

For each u e ll, an u-prime ideal is a 11-ideal. Hence the u-radical
N, of the ring R in the sense of [3] contains 1I(R). By §5 in [3], N,, is
a nil ideal of R. Hence the U-radical lI(R) of the ring R is also a nil
ideal of R.

Definition 5. A ring R is said to be a U-ring if and only if (0) is
a U-ideal of R.

If P is a U-ideal, then R/P is a U-ring and conversely. Since
N(R) is the intersection of all the U-ideals of R, by the similar methods
as in Theorems 5 and 6 of [4], we have the following two theorems.

Theorem 4. If U(r) s the U-radical of R, R/N(R) has the zero
U-radical.

Theorem 5. A mnecessary and sufficient condition that a ring be
isomorphic to a subdirect sum of U-rings is that it has zero U-radical.

Lemma 3. Let S be an over ring of a ring R. If each ideal of
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R is also an ideal of S, then U(R)=U(S) N R.

Proof. It is easily shown that if P is a Ul-ideal of S, then P R is
a U-ideal of R. Hence we have that WR)CU(S)N R by Theorem 2.
The converse inclusion is immediate, because a U-system in R is a U-
system in S.

If R is a ring, we shall denote by R, the ring of all matrices of
order n with coordinates in R.

Theorem 6. Let R be a ring with unit element. Then R is a 11-
ring if and only if R, is a U-ring.

Proof. First we assume that R is not a l-ring. Suppose that
2RO(aP), -+, (@2)=0, where each af¥ is a nonzero element of R,
then B (@), - -+, (@) =0 for each P» ¢ U. If ¢, is the matrix units
in R,, then by Lemma of [3], it follows that B¥((aPe,)), - - -, (@Pe,,))
=0, where each a{’e,;%0 and therefore JB¥((ae,), - - -, (a®e,))=0.
Thus we see that R is not a U-ring. Conversely, suppose that R, is
not a U-ring and that 2B (a®, .- -, AP)=0, where each A® is not a
nonzero ideal of R,, then LAY, ..., A®)=0 for each LY cll. By
Lemma of [3], there exist nonzero elements a®, ..., a® in R such that
B af), -+ -, (@P)=0 for each P eU. Hence IPY((a), - - -, (@)
=0. This shows that R is not a U-ring.

Theorem 7. If R is any nonassociative ring, then N(R,)=U(R)),.

Proof. This is immediate by Lemma 8 and Theorem 6.
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