60. Structure Theorems for Some Classes of Operators

By I. Istrǎţescu
Politechnic Institute Timişoara, Roumania
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1969)

1. We consider bounded linear operators on a Hilbert space H. Denote by $\sigma(T), \sigma_{p}(T), \sigma_{r}(T), \sigma_{c}(T)$ the spectrum, the point spectrum, the residual spectrum and the continuous spectrum respectively, by $r(T)$ $=\sup \{|\lambda|: \lambda \in \sigma(T)\}$ the spectral radius and by $W(T)=\{(T x, x):\|x\|=1\}$ the numerical range. It is known [3] that $W(T)$ is convex and conv $\sigma(T) \subset \mathrm{cl} W(T)$ (conv= convex hull, cl=closure). An operator T is said to be hyponormal if $T^{*} T-T T^{*} \geqslant 0$, or equivalently if $\left\|T^{*} x\right\| \leq\|T x\|$ for every $x \in H$. As in [1] an operator is said to be restriction-convexoid (reduction-convexoid) if the restriction of T to every invariant (invariant under T and T^{*}) subspace is convexoid, where convexoid means that conv $\sigma(T)=\operatorname{cl} W(T)$.

In this Note we give some theorems on structure of hyponormal and restriction-convexoid operators whose spectrum lies on a convex curve.
2. Our main result in this section is

Theorem 1. If T is a hyponormal operator and has the following properties
$1^{\circ} \quad T^{p}=S T^{* p} S^{-1}+C$ for some S for which $o \bar{\in} \mathrm{cl} W(S)$ and C = compact operator
2° if $\mu, \lambda \in \sigma(T), 1+\frac{\lambda}{\bar{\mu}}+\left(\frac{\lambda}{\bar{\mu}}\right)^{2}+\cdots+\left(\frac{\lambda}{\bar{\mu}}\right)^{p-1} \neq 0$
then T is a normal operator.
For the proof we need the following
Lemma 1. If T is a hyponormal operator which is the sum of a self-adjoint operator A and a compact operator C, then T is a normal operator.

Proof. Since T is hyponormal it is known [10] that T can be expressed uniquely as a direct sum $T=T_{1} \oplus T_{2}$ defined on a product space $H=H_{1} \oplus H_{2}$ where H_{1} is spanned by all the proper vectors of T such that: (a) T_{1} is normal and $\sigma\left(T_{1}\right)=\operatorname{cl} \sigma_{p}(T)$, (b) T_{2} is hyponormal and $\sigma_{p}\left(T_{2}\right)=\varnothing$, (c) T is normal if and only if T_{2} is normal.

From the fact that $T=A+C$ we conclude by Lemma 2 [10] that $\sigma_{c}\left(T_{2}\right) \subset \sigma(A)$ and therefore $\sigma_{c}\left(T_{2}\right)$ is real. Since $\sigma_{r}(T)$ is open [9] and (T) is closed, we have that $\partial_{r}\left(T_{2}\right) \subset \sigma_{p}\left(T_{2}\right) \cup \sigma_{c}\left(T_{2}\right)=\sigma_{c}\left(T_{2}\right)(\partial=$ boundary $)$. Therefore T_{2} is selfadjoint since T_{2} is hyponormal with real spectrum.

Proof of the theorem. If $I(H)$ is the ideal of compact operators and $\omega(T)$, the Weyl spectrum (this means $\omega(T)=\bigcap_{\sigma \in I(H)} \sigma(T+C)$) we obtain by the same reason as in [4] that $\omega(T)$ is real. By a result of Coburn [2] we conclude that $\sigma(T)=\omega(T) \cup \sigma_{0}(T)$ where $\sigma_{0}(T)$ contains only isolated eigenvalues of finite multiplicity. Let T_{1} the restriction of T to the space H_{1} generated by eigenvectors corresponding to eigenvalues $\lambda \in \sigma_{0}(T)$. If we denote $H_{2}=H_{1}^{\perp}$, we obtain

$$
H=H_{1} \oplus H_{2}
$$

and if $C=T_{1} \oplus 0$ and $A=0 \oplus T_{2}$ we obtain $T=A+C$ where A is selfadjoint and C is compact (with finite range) and by Lemma 1 it follows that T is a normal operator.

Corollary. If T is a hyponormal operator with compact imaginary part, then T is normal.

It is easy to see that for every operator we have

$$
T=T^{*}+2 i \operatorname{Im} T
$$

and by Theorem 1 for $p=1$ the corollary follows.
Another proof of this corollary is in [7] and [10]
3. Theorem 2. If a reduction-convexoid operator T whose spectrum lies on a convex curve is the sum of a compact operator C and a generalized nilpotent operator Q then T is normal.

Proof. Since T is convexoid and $\sigma(T)$ lies on a convex curve, T can be expressed as a direct sum $T_{1} \oplus T_{2}$ defined on a product space $H_{1} \oplus H_{2}$, where H_{1} is spanned by all the eigenvectors of T, such that T_{1} is normal with $\sigma\left(T_{1}\right)=\operatorname{cl} \sigma_{p}(T)$. By Weyl's Theorem [3 problem 143] we conclude that $\sigma(T) \subset \sigma(Q)=\{0\}$ except the eigenvalues which implies $\sigma\left(T_{2}\right) \subset\{0\}$ since $\sigma\left(T_{2}\right)=\sigma_{c}\left(T_{2}\right) \subseteq \sigma_{c}(T)$. By Lemma 6[6], H_{1} reduces T and thus T_{2} is convexoid operator with a single point in the spectrum. Since this point is zero we conclude that $T_{2}=0$ which implies $H_{2}=0$ and T is normal.

We recall that an operator $T,\|T\| \leq 1$ and $\sigma(T) \subset\{z:|z|=1\}$ is called unimodular contraction.

Corollary 1. If T is a convexoid unimodular contraction and T $=C+Q$ then T is unitary.

Corollary 2. If a reduction-convexoid operator T with compact imaginary part has the spectrum on a convex curve, then T is normal.

Proof. By Weyl's Theorem $\sigma(T)$ is real except the eigenvalues and we conclude as above that $\sigma\left(T_{2}\right)$ is real and convexoid. Therefore T_{2} is selfadjoint and by Theorem 2 [6] T is normal.

Theorem 3. If T has the following properties:
1° spectral (in the sense of Dunford)
2° is restriction-convexoid with compact imaginary part, then there exists a direct decomposition of $H, H=H_{\infty}+H_{1}+H_{2}+\cdots$ such

that

a) $H_{i}, i=1,2, \ldots$ is invariant under T
b) $\left.T\right|_{H_{\infty}}$ is scalar ($\left.T\right|_{H_{\infty}}$ is the restriction of T to H_{∞})
c) $\left.T\right|_{H_{i}}=\mu_{i} I, i=1,2, \cdots, \mu_{i}$ complex numbers.

Proof. Since T is almost normal [8], it follows that there exists a direct decomposition of H with properties a) and b) and

$$
\left.T\right|_{H_{i}}=\mu_{i} I+Q_{i}
$$

Q_{i} are compact nilpotent operators.
But $\left.T\right|_{H_{i}}$ is convexoid and therefore $\left.T\right|_{H_{i}}-\mu_{i} I$ is also convexoid with a single point (zero) in the spectrum. Then

$$
\left.T\right|_{H_{i}}-\mu_{i} I=0
$$

Theorem 4. If a restriction-convexoid operator whose spectrum lies on a convex curve is polynomially compact, then T is normal.

Proof. By Theorem 2 [6] we have that $T=T_{1}+T_{2}$ as above with the same properties. Since H_{2} is invariant under T and T is polynomially compact then $\sigma_{c}\left(\left.T\right|_{H_{2}}\right) \subseteq\{\lambda: p(\lambda) \doteqdot o\}$ where $p($.) is a polynomial with $p(T)=$ compact. Therefore $\sigma\left(T_{2}\right)$ is a finite set and thus $H_{2}=\{0\}$. Indeed, in the contrary case, since T is restriction convexoid we have that $\sigma\left(T_{2}\right)=\sigma_{p}\left(T_{2}\right)$ which is a contradiction.

References

[1] S. K. Berberian: Some conditions on an operator implying normality (to appear).
[2] L. A. Coburn: Weyl's theorem for nonnormal operators. Michigan Math. J., 13, 285-288 (1966).
[3] P. R. Halmos: A Hilbert Space Problem Book. Van Nostrand (1967).
[4] V. Istrǎţescu: A note on hyponormal operators (to appear, Journ. Indian Math. Soc.).
[5] -: On operators of class (N). Rev. Roum. Math. Pures et Appl., XIII, 343-345 (1968).
[6] C. H. Meng: On the numerical range of an operator. Proc. Amer. Math. Soc., 14, 167-171 (1963).
[7] C. R. Putnam: On the structure of semi-normal operators. Bull. Amer. Math. Soc., 69 (6), 818-819 (1963).
[8] J. Schwartz: On spectral operators in Hilbert space with compact imaginary part. Comm. Pure Appl. Math., XV, 95-97 (1962).
[9] A. E. Taylor: The minimum modulus of a linear operator, and its use for estimates in spectral theory. Studia Mathematica, 131-133 (1963).
[10] T. Yoshino: On a problem of Bonsall. Tôhoku Math. J., 20, 5-7 (1968).

