94. On Dirichlet Spaces and Dirichlet Rings

By Masatoshi Fukushima
Department of the Foundations of Mathematical Sciences, Tokyo University of Education (Comm. by Zyoiti Suetuna, m. J. A., June 10, 1969)

In [2], we have introduced the notion of the Dirichlet space relative to an L^{2}-space (we will call this an L^{2}-Dirichlet space). The purpose of this paper is to derive a normed ring (called a Dirichlet ring) from any given L^{2}-Dirichlet space in the similar manner as Royden ring [5] from the space of functions with finite Dirichlet integrals. Dirichlet rings will enable us to define a natural equivalence relation among the collection of all L^{2}-Dirichlet spaces. We will discuss elsewhere the problem to find out nice versions from each equivalence class ([3]).
§ 1. L^{2}-Dirichlet spaces and L^{2}-resolvents.
We call ($X, m, \mathscr{F}, \mathcal{E}$) a complex L^{2}-Dirichlet space (in short, a D space) if the following conditions are satisfied.
(1.1) $\quad X$ is a locally compact Hausdorff space.
(1.2) $\quad m$ is a Radon measure on X.
(1.3) \mathcal{F} is a linear subspace of complex $L^{2}(X)=L^{2}(X ; m)$, two functions being identified if they coincide m-a.e. on $X . \mathcal{E}$ is a non-negative definite bilinear form on \mathscr{F} and, for each $\alpha>0, \mathscr{F}$ is a complex Hilbert space with inner product

$$
\mathcal{E}^{\alpha}(u, v)=\mathcal{E}(u, v)+\alpha(u, v)_{X},
$$

where $(u, v)_{X}$ is the inner product in $L^{2}(X)$-sense.
(1.4) Each normal contraction operates on (F, \mathcal{E}):
if $u \in \mathscr{F}$ and a measurable function v satisfies

$$
|v(x)| \leqq|u(x)|, \quad|v(x)-v(y)| \leqq|u(x)-u(y)| m \text {-a.e, }
$$

then $v \in \mathscr{F}$ and $\mathcal{E}(v, v) \leqq \mathcal{E}(u, u)$.
Let (X, m) be as above. We call a family of linear bounded symmetric operators $\left\{G_{\alpha}, \alpha>0\right\}$ on $L^{2}(X)$ an L^{2}-resolvent iff it satisfies the resolvent equation and it is sub-Markov: for each $\alpha>0, G_{\alpha}$ translates each real function into a real function and $0 \leqq \alpha G_{\alpha} u \leqq 1 \mathrm{~m}$-a.e for $u \in L^{2}(X)$ such that $0 \leqq u \leqq 1 m$-a.e.

There is a one-to-one correspondence between the class of D-spaces and the class of L^{2}-resolvents ([2]).

In fact, with any D-space ($X, m, \mathcal{F}, \mathcal{E}$), we can associate an L^{2} resolvent by the equation

$$
\begin{equation*}
\mathcal{E}^{\alpha}\left(G_{\alpha} u, v\right)=(u, v)_{X} \quad \text { for any } \quad v \in \mathcal{F}, \tag{1.5}
\end{equation*}
$$

where u is any element of $L^{2}(X)$.
Conversely, for any $L^{2}(X ; m)$-resolvent $\left\{G_{\alpha}, \alpha>0\right\}$, a D-space can be defined by

$$
\begin{gather*}
\mathcal{E}(u, u)=\lim _{\beta \rightarrow+\infty} \beta\left(u-\beta G_{\beta} u, u\right)_{X}, u \in L^{2}(X), \tag{1.6}\\
\mathscr{F}=\left\{u \in L^{2}(X) ; \mathcal{E}(u, u)<+\infty\right\} . \tag{1.7}
\end{gather*}
$$

We note that each normal contraction operates on this space because of the following lemma.

Lemma 1. For $u \in L^{2}(X), \alpha \geqq 0, \beta>0$,

$$
\begin{aligned}
& \beta\left(u-\beta G_{\beta+\alpha} u, u\right)_{X}=\frac{1}{2} \beta^{2} \int_{X} \int_{X} \sigma_{\beta+\alpha}(d x, d y)|u(x)-u(y)|^{2} \\
+ & \frac{\beta}{\beta+\alpha} \alpha(u, u)_{X}+\frac{\beta}{\beta+\alpha} \beta \int_{X}\left(1-(\beta+\alpha) k_{\beta+\alpha}(x)\right)|u(x)|^{2} m(d x)
\end{aligned}
$$

Here, σ_{β} is a Radon measure satisfying

$$
\left(u, G_{\beta} v\right)_{X}=\int_{X} \int_{X} \sigma_{\beta}(d x, d y) u(x) \overline{v(y)}, \quad u, v \in L^{2}(X)
$$

and k_{β} is a Radon-Nikodym derivative of the measure $\sigma_{\beta}(\cdot \times X)$ with respect to $m(\cdot)$.

The correspondence defined by (1.5) and that defined by (1.6) and (1.7) are reciprocal to each other. This fact combined with Lemma 1 enables us to strengthen the condition (1.4) for the D-space as follows.

Lemma 2. Let ($X, m, \mathscr{F}, \mathcal{E}$) be a D-space. If $u_{1}, u_{2}, \cdots, u_{n} \in \mathscr{F}$ and if a measurable function w on X satisfies $|w(x)| \leqq \sum_{i=1}^{n}\left|u_{i}(x)\right|$, $|w(x)-w(y)| \leqq \sum_{i=1}^{n}\left|u_{i}(x)-u_{i}(y)\right| m$-a.e, then $w \in \mathscr{F}$ and $\sqrt{\mathcal{E}^{\alpha}(w, w)}$ $\leqq \sum_{i=1}^{n} \sqrt{\mathcal{E}^{\alpha}\left(u_{i}, u_{i}\right)}, \alpha \geqq 0, \mathcal{E}^{0}$ standing for \mathcal{E}.

§2. Dirichlet rings and equivalence of Dirichlet spaces.

Consider a D-space $(X, m, \mathscr{F}, \mathcal{E})$. We set, for $u \in L^{\infty}(X)$ $\left(=L^{\infty}(X ; m)\right),\|u\|_{\infty}=\underset{x \in X}{\operatorname{ess-sup}}|u(x)|$. Let us put

$$
\begin{align*}
& \mathscr{F}^{(b)}=\mathscr{F} \cap L^{\infty}(X), \tag{2.1}\\
& \|u\|_{\alpha}=\sqrt{\mathcal{E}^{\alpha}(u, u)}+\|u\|_{\infty}, \quad u \in \mathscr{F}^{(b)}, \quad \alpha>0 . \tag{2.2}
\end{align*}
$$

Theorem 1. (i) For each $\alpha>0,\left(\mathcal{F}^{(b)}, \mid\| \| \|_{\alpha}\right)$ is a normed ring, two functions of $\mathscr{F}^{(b)}$ being identified if they coincide m-a.e. Exactly speaking, it is a complex Banach space and, for any $u, v \in \mathcal{F}^{(b)}$, $u \cdot v \in \mathcal{F}^{(b)}$ and $\left\|\|u \cdot v\|_{\alpha} \leqq \mid\right\| u\left\|_{\alpha} \cdot\right\|\|v\|_{\alpha}$.

For any $u \in \mathscr{F}^{(b)}$ and $\alpha>0$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sqrt[n]{ } \sqrt{\left\|u^{n}\right\| \|_{\alpha}}=\|u\|_{\infty} \tag{ii}
\end{equation*}
$$

Proof. Applying Lemma 2 to functions $w=u \cdot v, u_{1}=B \cdot u$ and $u_{2}=A \cdot v$ with $A=\|u\|_{\infty}, B=\|v\|_{\infty}$, we see that $w \in \mathscr{F}$ and $\sqrt{\mathcal{E}^{\alpha}(w, w)}$ $\leqq B \sqrt{\mathcal{E}^{\alpha}(u, u)}+A \sqrt{\mathcal{E}^{\alpha}(v, v)}$. This implies the latter assertion of (i). The left hand side of (2.3) is not greater than $A=\|u\|_{\infty}$, since u^{n} is a normal
contraction of $n A^{n-1} u$. The converse inequality is trivial.
We call $\left(\mathcal{F}^{(b)},\left|\|\mid\|_{\alpha}, \alpha>0\right)\right.$ the Dirichlet ring (in short, D-ring) induced by ($X, m, \mathscr{F}, \mathcal{E}$). This ring has not necessarily a unit element for multiplication.

Lemma 3. Let \mathscr{F}_{1} be a Dirichlet subspace of \mathscr{F} and L be a closed subring of $\left(L^{\infty}(X),\|\quad\|_{\infty}\right)$. We assume that $u \in L$ implies $\bar{u} \in L$. Then, the intersection \mathbb{R} of \mathscr{F}_{1} and L is a closed subring of $\left(\mathscr{F}^{(b)},\left|\left|\left|\left|| |_{\alpha}\right)\right.\right.\right.\right.$. \mathcal{R} is semi-simple and symmetric with respect to the operation of taking complex conjugate function. \mathcal{R} is a function lattice; for any real $u, v \in \mathcal{R}, u \vee v$ and $u \wedge v$ are also in \mathcal{R}. Further, for any real $u \in \mathscr{R}, u \wedge 1 \in \mathcal{R}$.

Proof. In view of the equality (2.3), \mathcal{R} is semi-simple. \mathcal{R} is symmetric, or equivalently ([4]), $u \in \mathscr{R}$ implies $v=|u|^{2} / 1+|u|^{2} \in \mathcal{R}$, because v is a normal contraction of $|u|^{2} \in \mathcal{R}$. For real $u \in \mathcal{R},|u|$ and $u \wedge 1$ are normal contractions of u, yielding the final statement.

We will call two D-spaces $(X, m, \mathscr{F}, \mathcal{E})$ and ($\widetilde{X}, \tilde{m}, \widetilde{\mathcal{F}}, \widetilde{\mathcal{E}})$ equivalent iff their associated D-rings ($\mathscr{F}^{(b)},\| \|\| \|_{\alpha}, \alpha>0$) and ($\mathcal{F}^{(b)},\| \| \widetilde{\|}_{\|}, \alpha>0$) are isomorphic and isometric, exactly speaking, iff there is a ring isomorph Φ from $\mathscr{F}^{(b)}$ onto $\widetilde{\mathscr{F}}^{(b)}$ and $\|\widetilde{\mathscr{T}}\|_{\alpha}=\|u\|_{\alpha}$ for any $u \in \mathcal{F}^{(b)}$ and $\alpha>0$.

Theorem 2. Suppose that D-spaces $(X, m, \mathcal{F}, \mathcal{E})$ and $(\tilde{X}, \tilde{m}, \tilde{\mathscr{F}}, \tilde{\mathcal{E}})$ are equivalent under a mapping Φ from $\mathcal{F}^{(b)}$ onto $\widetilde{\mathscr{F}}^{(b)}$. Then, Φ turns out to be a lattice isomorph and Φ can be extended uniquely to the next kinds of transformations.
(a) A unitary mapping Φ_{1} from (\mathcal{F}, \mathcal{E}) onto ($\mathcal{F}, \tilde{\mathcal{E}}$),
(b) A unitary mapping Φ_{2} from $L_{0}^{2}(X)$ onto $L_{0}^{2}(\tilde{X})$,
(c) A ring isomorphic and isometric mapping Φ_{3} from $L_{0}^{\infty}(X)$ onto $L_{0}^{\infty}(\tilde{X})$. Here, $L_{0}^{2}(X)\left(L_{0}^{\infty}(X)\right)$ is the closure of $\mathcal{F}\left(\mathcal{F}^{(b)}\right)$ in the metric space $L^{2}(X)\left(L^{\infty}(X)\right) . \quad L_{0}^{2}(\tilde{X})$ and $L_{0}^{\infty}(\tilde{X})$ are defined in the same way. Further, the associated L^{2}-resolvents $\left\{G_{\alpha}, \alpha>0\right\}$ and $\left\{\tilde{G}_{\alpha}, \alpha>0\right\}$ are related by

$$
\begin{equation*}
\tilde{G}_{\alpha} \tilde{u}=\Phi_{2} G_{\alpha} \Phi_{2}^{-1} \tilde{u}, \quad \tilde{u} \in L_{0}^{2}(\tilde{X}), \quad \alpha>0 \tag{2.4}
\end{equation*}
$$

Proof. Owing to the equality (2.3), Φ preserves the uniform norm. On the other hand, $\mathcal{F}^{(b)}$ is dense in \mathscr{F} with metric \mathcal{E}^{α} ([2]; Lemma 2.1 and Theorem 2.1 (iii)). All the assertions but (2.4) follow from these facts and the definition of equivalence. Take $\tilde{u} \in L_{0}^{2}(\tilde{X})$. By (1.5), we have for any $\tilde{v} \in \widetilde{\mathscr{F}}$,

$$
\begin{aligned}
\widetilde{\mathcal{E}}^{\alpha}\left(\tilde{G}_{\alpha} \tilde{u}, \tilde{v}\right) & =(\widetilde{u}, \tilde{v})_{\tilde{x}}=\left(\Phi_{2}^{-1} \widetilde{u}, \Phi_{2}^{-1} \widetilde{v}\right)_{X}=\mathcal{E}^{\alpha}\left(G_{\alpha} \Phi_{2}^{-1} \tilde{u}, \Phi_{2}^{-1} \widetilde{v}\right) \\
& =\widetilde{\mathcal{E}}^{\alpha}\left(\Phi_{2} G_{\alpha} \Phi_{2}^{-1} \widetilde{u}, \widetilde{v}\right),
\end{aligned}
$$

which implies (2.4).

References

[1] A. Beurling and J. Deny: Dirichlet spaces. Proc. Nat. Acad. Sc., 45, 208215 (1959).
[2] M. Fukushima: On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities. J. Math. Soc. Japan, 21, 5893 (1969).
[3] -: Dirichlet spaces and their representations. Seminar on Probability, 31 (1969) (in Japanese).
[4] L. H. Loomis: An Introduction to Abstract Harmonic Analysis. Van Nostrand (1953).
[5] H. L. Royden: The ideal boundary of an open Riemann surface. Annals of Mathematics Studies, 30, 107-109 (1953).

