94. On Dirichlet Spaces and Dirichlet Rings

By Masatoshi FUKUSHIMA

Department of the Foundations of Mathematical Sciences, Tokyo University of Education

(Comm. by Zyoiti SUETUNA, M. J. A., June 10, 1969)

In [2], we have introduced the notion of the Dirichlet space relative to an L^2 -space (we will call this an L^2 -Dirichlet space). The purpose of this paper is to derive a normed ring (called a Dirichlet ring) from any given L^2 -Dirichlet space in the similar manner as Royden ring [5] from the space of functions with finite Dirichlet integrals. Dirichlet rings will enable us to define a natural equivalence relation among the collection of all L^2 -Dirichlet spaces. We will discuss elsewhere the problem to find out nice versions from each equivalence class ([3]).

§1. L^2 -Dirichlet spaces and L^2 -resolvents.

We call $(X, m, \mathcal{F}, \mathcal{E})$ a complex L^2 -Dirichlet space (in short, a D-space) if the following conditions are satisfied.

(1.1) X is a locally compact Hausdorff space.

(1.2) m is a Radon measure on X.

(1.3) \mathcal{F} is a linear subspace of complex $L^2(X) = L^2(X; m)$,

two functions being identified if they coincide *m*-a.e. on *X*. \mathcal{E} is a non-negative definite bilinear form on \mathcal{F} and, for each $\alpha > 0$, \mathcal{F} is a complex Hilbert space with inner product

 $\mathcal{E}^{\alpha}(u,v) = \mathcal{E}(u,v) + \alpha(u,v)_{X},$

where $(u, v)_X$ is the inner product in $L^2(X)$ -sense.

(1.4) Each normal contraction operates on $(\mathcal{F}, \mathcal{E})$:

if $u \in \mathcal{F}$ and a measurable function v satisfies

 $|v(x)| \leq |u(x)|, |v(x)-v(y)| \leq |u(x)-u(y)|$ m-a.e, then $v \in \mathcal{F}$ and $\mathcal{E}(v, v) \leq \mathcal{E}(u, u)$.

Let (X, m) be as above. We call a family of linear bounded symmetric operators $\{G_{\alpha}, \alpha > 0\}$ on $L^2(X)$ an L^2 -resolvent iff it satisfies the resolvent equation and it is sub-Markov: for each $\alpha > 0$, G_{α} translates each real function into a real function and $0 \le \alpha G_{\alpha} u \le 1$ *m*-a.e for $u \in L^2(X)$ such that $0 \le u \le 1$ *m*-a.e.

There is a one-to-one correspondence between the class of D-spaces and the class of L^2 -resolvents ([2]).

In fact, with any *D*-space $(X, m, \mathcal{F}, \mathcal{E})$, we can associate an L^2 -resolvent by the equation

(1.5) $\mathcal{E}^{\alpha}(G_{\alpha}u,v) = (u,v)_{\mathcal{X}} \text{ for any } v \in \mathcal{F},$

where u is any element of $L^2(X)$.

Conversely, for any $L^2(X; m)$ -resolvent $\{G_{\alpha}, \alpha > 0\}$, a *D*-space can be defined by

(1.6) $\mathcal{E}(u, u) = \lim_{\beta \to +\infty} \beta(u - \beta G_{\beta} u, u)_X, u \in L^2(X),$

(1.7) $\mathcal{F} = \{ u \in L^2(X) ; \mathcal{E}(u, u) < +\infty \}.$

We note that each normal contraction operates on this space because of the following lemma.

Lemma 1. For $u \in L^2(X)$, $\alpha \ge 0$, $\beta > 0$,

$$\beta(u-\beta G_{\beta+\alpha}u,u)_{x} = \frac{1}{2}\beta^{2}\int_{x}\int_{x}\sigma_{\beta+\alpha}(dx,dy)|u(x)-u(y)|^{2}$$
$$+\frac{\beta}{\beta+\alpha}\alpha(u,u)_{x} + \frac{\beta}{\beta+\alpha}\beta\int_{x}(1-(\beta+\alpha)k_{\beta+\alpha}(x))|u(x)|^{2}m(dx).$$

Here, σ_{β} is a Radon measure satisfying

 $(u, G_{\beta}v)_{X} = \int_{X} \int_{X} \sigma_{\beta}(dx, dy) u(x) \overline{v(y)}, \qquad u, v \in L^{2}(X),$

and k_{β} is a Radon-Nikodym derivative of the measure $\sigma_{\beta}(\cdot \times X)$ with respect to $m(\cdot)$.

The correspondence defined by (1.5) and that defined by (1.6) and (1.7) are reciprocal to each other. This fact combined with Lemma 1 enables us to strengthen the condition (1.4) for the *D*-space as follows.

Lemma 2. Let $(X, m, \mathcal{F}, \mathcal{E})$ be a D-space. If $u_1, u_2, \dots, u_n \in \mathcal{F}$ and if a measurable function w on X satisfies $|w(x)| \leq \sum_{i=1}^{n} |u_i(x)|$, $|w(x) - w(y)| \leq \sum_{i=1}^{n} |u_i(x) - u_i(y)|$ m-a.e, then $w \in \mathcal{F}$ and $\sqrt{\mathcal{E}^{\alpha}(w, w)}$ $\leq \sum_{i=1}^{n} \sqrt{\mathcal{E}^{\alpha}(u_i, u_i)}, \alpha \geq 0, \mathcal{E}^0$ standing for \mathcal{E} .

§2. Dirichlet rings and equivalence of Dirichlet spaces.

Consider a *D*-space $(X, m, \mathcal{F}, \mathcal{E})$. We set, for $u \in L^{\infty}(X)$ $(=L^{\infty}(X; m)), ||u||_{\infty} = \underset{x \in X}{\operatorname{ess-sup}} |u(x)|$. Let us put

$$(2.1) \qquad \qquad \mathcal{F}^{\scriptscriptstyle (b)} \!=\! \mathcal{F} \cap L^{\scriptscriptstyle \infty}(X),$$

(2.2)
$$|||u|||_{\alpha} = \sqrt{\mathcal{E}^{\alpha}(u, u)} + ||u||_{\infty}, \qquad u \in \mathcal{F}^{(b)}, \qquad \alpha > 0.$$

Theorem 1. (i) For each $\alpha > 0$, $(\mathcal{F}^{(b)}, ||| \quad |||_{\alpha})$ is a normed ring, two functions of $\mathcal{F}^{(b)}$ being identified if they coincide m-a.e. Exactly speaking, it is a complex Banach space and, for any $u, v \in \mathcal{F}^{(b)}$, $u \cdot v \in \mathcal{F}^{(b)}$ and $|||u \cdot v|||_{\alpha} \leq |||u|||_{\alpha} \cdot |||v|||_{\alpha}$.

(ii) For any
$$u \in \mathcal{F}^{(b)}$$
 and $\alpha > 0$,
(2.3) $\lim_{n \to \infty} \sqrt{||u^n|||_{\alpha}} = ||u||_{\infty}$.

Proof. Applying Lemma 2 to functions $w = u \cdot v$, $u_1 = B \cdot u$ and $u_2 = A \cdot v$ with $A = ||u||_{\infty}$, $B = ||v||_{\infty}$, we see that $w \in \mathcal{F}$ and $\sqrt{\mathcal{E}^{\alpha}(w, w)} \leq B\sqrt{\mathcal{E}^{\alpha}(u, u)} + A\sqrt{\mathcal{E}^{\alpha}(v, v)}$. This implies the latter assertion of (i). The left hand side of (2.3) is not greater than $A = ||u||_{\infty}$, since u^n is a normal

[Vol. 45,

434

contraction of $nA^{n-1}u$. The converse inequality is trivial.

We call $(\mathcal{F}^{(b)}, ||| |||_{\alpha}, \alpha > 0)$ the *Dirichlet ring* (in short, *D-ring*) induced by $(X, m, \mathcal{F}, \mathcal{E})$. This ring has not necessarily a unit element for multiplication.

Lemma 3. Let \mathcal{F}_1 be a Dirichlet subspace of \mathcal{F} and L be a closed subring of $(L^{\infty}(X), \| \|_{\infty})$. We assume that $u \in L$ implies $\bar{u} \in L$. Then, the intersection \mathcal{R} of \mathcal{F}_1 and L is a closed subring of $(\mathcal{F}^{(b)}, \|\| \|\|_{\alpha})$. \mathcal{R} is semi-simple and symmetric with respect to the operation of taking complex conjugate function. \mathcal{R} is a function lattice; for any real $u, v \in \mathcal{R}, u \lor v$ and $u \land v$ are also in \mathcal{R} . Further, for any real $u \in \mathcal{R}, u \land 1 \in \mathcal{R}$.

Proof. In view of the equality (2.3), \mathcal{R} is semi-simple. \mathcal{R} is symmetric, or equivalently ([4]), $u \in \mathcal{R}$ implies $v = |u|^2/1 + |u|^2 \in \mathcal{R}$, because v is a normal contraction of $|u|^2 \in \mathcal{R}$. For real $u \in \mathcal{R}$, |u| and $u \wedge 1$ are normal contractions of u, yielding the final statement.

We will call two *D*-spaces $(X, m, \mathcal{F}, \mathcal{E})$ and $(\tilde{X}, \tilde{m}, \tilde{\mathcal{F}}, \tilde{\mathcal{E}})$ equivalent iff their associated *D*-rings $(\mathcal{F}^{(b)}, ||| \quad |||_{\alpha}, \alpha > 0)$ and $(\tilde{\mathcal{F}}^{(b)}, ||| ~ |||_{\alpha}, \alpha > 0)$ are isomorphic and isometric, exactly speaking, iff there is a ring isomorph Φ from $\mathcal{F}^{(b)}$ onto $\tilde{\mathcal{F}}^{(b)}$ and $|||\tilde{\Phi u}|||_{\alpha} = |||u|||_{\alpha}$ for any $u \in \mathcal{F}^{(b)}$ and $\alpha > 0$.

Theorem 2. Suppose that D-spaces $(X, m, \mathcal{F}, \mathcal{E})$ and $(\tilde{X}, \tilde{m}, \tilde{\mathcal{F}}, \tilde{\mathcal{E}})$ are equivalent under a mapping Φ from $\mathcal{F}^{(b)}$ onto $\tilde{\mathcal{F}}^{(b)}$. Then, Φ turns out to be a lattice isomorph and Φ can be extended uniquely to the next kinds of transformations.

(a) A unitary mapping Φ_1 from $(\mathcal{F}, \mathcal{E})$ onto $(\tilde{\mathcal{F}}, \tilde{\mathcal{E}})$,

(b) A unitary mapping Φ_2 from $L^2_0(X)$ onto $L^2_0(\tilde{X})$,

(c) A ring isomorphic and isometric mapping Φ_3 from $L_0^{\circ}(X)$ onto $L_0^{\circ}(\tilde{X})$. Here, $L_0^2(X)(L_0^{\circ}(X))$ is the closure of $\mathcal{F}(\mathcal{F}^{(b)})$ in the metric space $L^2(X)(L^{\circ}(X))$. $L_0^2(\tilde{X})$ and $L_0^{\circ}(\tilde{X})$ are defined in the same way. Further, the associated L^2 -resolvents $\{G_{\alpha}, \alpha > 0\}$ and $\{\tilde{G}_{\alpha}, \alpha > 0\}$ are related by

(2.4) $\tilde{G}_{\alpha}\tilde{u} = \Phi_2 G_{\alpha} \Phi_2^{-1} \tilde{u}, \qquad \tilde{u} \in L^2_0(\tilde{X}), \qquad \alpha > 0.$

Proof. Owing to the equality (2.3), Φ preserves the uniform norm. On the other hand, $\mathcal{F}^{(b)}$ is dense in \mathcal{F} with metric \mathcal{E}^{α} ([2]; Lemma 2.1 and Theorem 2.1 (iii)). All the assertions but (2.4) follow from these facts and the definition of equivalence. Take $\tilde{u} \in L^2_0(\tilde{X})$. By (1.5), we have for any $\tilde{v} \in \tilde{\mathcal{F}}$,

$$\begin{split} \bar{\mathcal{E}}^{\alpha}(\tilde{G}_{\alpha}\tilde{u},\tilde{v}) = & (\tilde{u},\tilde{v})_{\widetilde{X}} = (\Phi_2^{-1}\tilde{u},\Phi_2^{-1}\tilde{v})_X = \mathcal{E}^{\alpha}(G_{\alpha}\Phi_2^{-1}\tilde{u},\Phi_2^{-1}\tilde{v}) \\ &= \tilde{\mathcal{E}}^{\alpha}(\Phi_2G_{\alpha}\Phi_2^{-1}\tilde{u},\tilde{v}), \end{split}$$

which implies (2.4).

No. 6]

M. FUKUSHIMA

References

- A. Beurling and J. Deny: Dirichlet spaces. Proc. Nat. Acad. Sc., 45, 208-215 (1959).
- [2] M. Fukushima: On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities. J. Math. Soc. Japan, 21, 58-93 (1969).
- [3] ——: Dirichlet spaces and their representations. Seminar on Probability, 31 (1969) (in Japanese).
- [4] L. H. Loomis: An Introduction to Abstract Harmonic Analysis. Van Nostrand (1953).
- [5] H. L. Royden: The ideal boundary of an open Riemann surface. Annals of Mathematics Studies, 30, 107-109 (1953).