129. On the Category of $L^1(G) \cap L^p(G)$ in $A^q(G)^{*}$

By Hang-Chin LAI

Mathematical Institute Tohoku University, Sendai and Institute of Mathematics National Tsing Hua University, Taiwan, China

(Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1969)

1. Introduction and the main results.

Let G and \hat{G} be two locally compact abelian groups in Pontrjagin duality. The integration with respect to a suitably normalized Haar measure on G is indicated by the expressions such as

$$(1) \qquad \qquad \int_{G} f(x) \ dx$$

Let $C_c(G)$ denote the space of all continuous complex-valued functions on G each of which vanishes outside of some compact set, and $C_c(G)$ the set of continuous functions each of which vanishes at infinity. We shall denote $A^p(G)$ $(1 \le p < \infty)$ the space of functions f in $L^1(G)$ whose Fourier transforms \hat{f} belong to $L^p(\hat{G})$ $(p \ge 1)$ and with the norm defined by

(2)
$$||f||^p = ||f||_1 + ||\hat{f}||_p$$

where $||f||_1 = \int_{\mathcal{G}} |f(x)| dx$ and $||\hat{f}||_p = \left(\int_{\hat{\mathcal{G}}} |\hat{f}(\hat{x})|^p d\hat{x}\right)^{1/p}$, $d\hat{x}$ denotes the integration with respect to Haar measure on \hat{G} . Clearly, $A^p(G)$ is a dense ideal in $L^1(G)$ and is a Banach algebra under convolution with the norm $||\cdot||^p$ (see Larsen, Liu and Wang [6]).

We denote T_1 and T_2 the Fourier transforms on $L^1(G)$ and $L^2(G)$ respectively. That is

(3)
$$T_{1}f(\hat{x}) = \int_{G} (-x, \hat{x})f(x) dx$$

and

$$\|T_1 f\|_{\infty} \leq \|f\|_1 \ \|T_2 f\|_2 = \|f\|_2.$$

If $f \in C_c(G)$, the Fourier transform T is defined by the usual expression

$$(5) Tf(\hat{x}) = \int_{G} (-x, \hat{x}) f(x) dx,$$

and $T_1f = T_2f = Tf$ for every $f \in C_c(G)$. Throughout this present note, we suppose essentially that 1 and <math>1/p + 1/q = 1. A. Weil [9; pp. 116-117] has shown, by using the convexity theorem of M. Riesz

^{*)} This research was supported by the Mathematics Research Center, National Science Council, Taiwan, Republic of China.

that the mapping T of (5) has the property that $Tf \in L^q(\hat{G})$ and (6) $\|Tf\|^q \le \|f\|_p$ for 1 .

Thus T can be extended to a bounded linear transform T_p with domain $L^p(G)$ and range contained in $L^q(\hat{G})$ such that $T_p(L^p(G))$ is dense in $L^q(\hat{G})$ and

$$||T_{p}f||_{q} \leq ||f||_{p}$$

for any $f \in L^p(G)$ (1<p<2) (cf. E. Hewitt [2]). Furthermore one sees that T_p is a one-to-one mapping. Indeed, for $f \in L^p(G)$, $\varphi \in L^p(\hat{G})$, one defines the bilinear form by

$$B(f, \varphi) = \int_{G} f \overline{T'_{p}(\varphi)} dx = \int_{\hat{G}} T_{p}(f) \dot{\varphi} d\hat{x}$$

where $T_p: L^p(G) \to L^q(\hat{G})$ and $T_p': L^p(\hat{G}) \to L^q(G)$ are well defined bounded linear mappings since $C_c(G)$ and $C_c(\hat{G})$ are dense in $L^p(G)$ and $L^p(\hat{G})$ (cf. Weil 9 pp. 116–117), we see that if $T_p f = 0$, then $B(f, \varphi) = 0$ for any φ and hence f = 0. This shows the one to one property of T_p .

For any locally compact abelian group G, the set $\widehat{L}^1(\widehat{G})$ of the Fourier transforms of the group algebra $L^1(G)$ is dense in $C_o(\widehat{G})$. Furthermore $\widehat{L}^1(\widehat{G})$ is either a dense set of the first category in $C_o(\widehat{G})$ or all of the space $C_o(\widehat{G})$ according as G is infinite or finite (see I. E. Segal [8]). In [8], Segal suggested a question that if G is a locally compact abelian group and $1 , then the Fourier transform maps <math>L^p(G)$ into a dense subset of $L^q(\widehat{G})$ where 1/p+1/q=1, which is a set of first category only if G is infinite. The affirmative answer to this question was given by E. Hewitt [2].

Recently, Larsen, Liu and Wang [6] investigated the algebra $A^p(G) = \{f \in L^1(G) ; \hat{f}(\hat{x}) \in L^p(\hat{G})\}$. They have shown that $L^1(G) \cap L^2(G) = A^2(G)$ [6; Theorem 8] and stated a plausible conjecture that

(8) " $L^1(G) \cap L^p(G) = A^q(G)$ (1 , <math>1/p + 1/q = 1) is false" Our purpose is to prove this conjecture. In fact we have the following further result.

Theorem 1. Let G be a non-discrete locally compact abelian group and 1 , <math>1/p + 1/q = 1. Then the set $L^1(G) \cap L^p(G)$ is a dense set of the first category in $A^q(G)$ with respect to the A^q -topology (defined in (2)) and the set of functions in $A^q(G)$ which are not in $L^1(G) \cap L^p(G)$ is a dense set of the second category.

2. Some lemmas.

The proof of Theorem 1 is based on the construction in Hewitt [2]. We need some lemmas for the proof. Now we start from the following.

Lemma 2. Let G be any locally compact abelian group and 1 , <math>1/p+1/q=1. Then the set $L^1(G) \cap L^p(G)$ is a dense set in $A^q(G)$

with respect to the $A^{q}(G)$ -topology (defined in (2)).

Proof. It sufficies to show that for any $\varepsilon > 0$ and $f \in A^q(G)$, there exists a function $h \in L^1(G) \cap L^p(G)$ such that

$$||f-h||^q < \varepsilon.$$

Let $f \in A^q(G)$. Then there is a sequence $\{f_n\}_{n=1}^{\infty}$ in $L^1(G) \cap L^p(G)$ such that $f_n \rightarrow f$ in L^1 -topology as $n \rightarrow \infty$. Suppose that $\{e_\alpha\}$ is an approximate identity in $A^{q}(G)$ (see Lai [5; Theorem 1]). Then for each e_{α} ,

$$f_n * e_\alpha \rightarrow f * e_\alpha$$
 in L^1 -topology

The same argument can be carried over as the proof of Theorem 2 in Lai [5], thus there exist indices n_0 and α_0 such that

$$||f_{n_0}*e_{\alpha_0}-f||^q<\varepsilon$$
.

Since $e_{\alpha_0} \in A^q(G) \subset L^1(G)$ and $f_{n_0} \in L^1(G) \cap L^p(G) \subset L^p(G)$,

$$e_{lpha_0}{st} f_{n_0} \in L^1(G) \cap L^p(G)$$
ry 3.3 or Hewitt and Ross [4] p. 298). Th

(see Hewitt [3] Corollary 3.3 or Hewitt and Ross [4] p. 298). fore $L^1(G) \cap L^p(G)$ is dense in $A^q(G)$. Q.E.D.

We need the following lemma which is analogous to S. Banach [1; Theorem 2 pp. 197–199] in the case of $L^q(0, 1)$ on the real line.

Lemma 3. Let G be a locally compact abelian group and $\{g_n\}_{n=1}^{\infty}$ be any sequence in $L^p(G)$ which converges weakly to zero, then there

exists a subsequence
$$\{g_{nk}\}_{k=1}^{\infty}$$
 of $\{g_n\}_{n=1}^{\infty}$ such that
$$\left\|\sum_{k=1}^{m}g_{nk}\right\|_{p} = \begin{cases} 0(m^{1/2}) & \text{for } 2 \leq p \\ 0(m^{1/p}) & \text{for } 1$$

Proof. We can prove by the same argument, mutatis mutandis, as that for Theorem 2 of [1; pp. 197–199] (cf. also [2]).

Proof of the main theorem.

In the following proof, we need only for p>2 in Lemma 3.

Proof of Theorem 1. Define a norm on $L^1(G) \cap L^p(G)$ by (10) $||f|| = ||f||_1 + ||f||_p$

for any $f \in L^1(G) \cap L^p(G)$. Then $E = \{L^1(G) \cap L^p(G); \|\cdot\|\}$ is a Banach space. Let Φ be an identity mapping of E into $A^q(G)$. Thus for $f \in E$

$$\|\Phi f\|^q = \|f\|^q = \|f\|_1 + \|\hat{f}\|_q \le \|f\|_1 + \|f\|_p = \|f\|$$

proves that Φ is a bounded linear mapping of E one to one into $A^q(G)$. We want to prove that $L^1(G) \cap L^p(G) \neq A^q(G)$. We proceed by contradiction, supposing that $L^1(G) \cap L^p(G) = A^q(G)$. Then the transformation is a bicontinuous mapping of E onto $A^{q}(G)$, there exists a positive constant $C(\geq 1)$ such that

$$||f|| = ||\Phi^{-1}(\Phi f)|| \le C ||\Phi f||^q$$

for all $f \in E$. That is

$$||f||_1 + ||f||_p \le C(||\Phi f||_1 + ||\widehat{\Phi} f||_q)$$

$$= C||f||_1 + C||\widehat{f}||_q$$

or

(11)
$$||f||_p \le C ||\hat{f}||_q + (C-1)||f||_1.$$

the following construction is based on Hewitt [2] Lemma A.

If G is non discrete group, then the Haar measure μ of every open set U containing the identity is positive but it can be made arbitrarily small for appropriately chosen U. It is then apparent that there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoints measurable sets in G such that $\mu(A_n) > 0$ $(n=1,2,\cdots)$ and $\lim_{n\to\infty} \mu(A_n) = 0$. Write $\mu(A_n) = \alpha_n$ and define

$$f_n(x) = \begin{cases} \alpha_n^{-1/p} & x \in A_n \\ 0 & x \notin A_n, \end{cases}$$

then it is easy to see that $f_n \in L^1(G) \cap L^p(G)$. This sequence $\{f_n\}_{n=1}^{\infty}$ converges weakly to zero in $L^p(G)$. To show this fact, we consider an arbitrary function $\varphi \in C_c(G)$, then we have

$$\left| \int_{G} f_{n}(x) \varphi(x) \ dx \right| \leq \sup_{x \in G} \left| \varphi(x) \right| \alpha_{n}^{1 - \frac{1}{p}}$$

and thus $\lim_{n\to\infty} \int_G f_n(x)\varphi(x) dx = 0$. Since $C_c(G)$ is dense in $L^q(G)$, f_n converges weakly to zero.

As $\alpha_n \to 0$ for $n \to \infty$, we then can choose a subsequence $\{A_{nk}\}_{k=1}^{\infty}$ of $\{A_n\}_{n=1}^{\infty}$ such that

(13)
$$\alpha_{nk} < \frac{1}{2^{k/1-\frac{1}{n}}}.$$

It follows that the subsequence $\{f_{nk}\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ converges weakly to zero in $L^p(G)$ and

(14)
$$||f_{nk_1} + f_{nk_2} + \cdots + f_{nk_m}||_p = m^{1/p}$$

for all subsets $\{f_{nk_1}, f_{nk_2}, \dots, f_{nk_m}\}$ of $\{f_{nk}\}_{k=1}^{\infty} (m=1, 2, \dots)$. Hence the sequence $\{T_p f_{nk}\}_{k=1}^{\infty}$ i.e. $\{\hat{f}_{nk}\}_{k=1}^{\infty}$ converges weakly to zero in $L^q(\hat{G})$. By Lemma 3, there exists a subsequence $\{\hat{f}_{nk_i}\}_{i=1}^{\infty}$ of $\{\hat{f}_{nk}\}_{k=1}^{\infty}$ and a constant A such that

(15)
$$\|\hat{f}_{nk_1} + \hat{f}_{nk_2} + \cdots + \hat{f}_{nk_m}\|_q \le Am^{1/2}$$
 $(q > 2).$

Therefore, by (11),

$$\left\| \sum_{i=1}^{m} f_{nk_i} \right\|_p \leq C \left\| \sum_{i=1}^{m} \hat{f}_{nk_i} \right\|_q + (C-1) \left\| \sum_{i=1}^{m} f_{nk_i} \right\|_1.$$

It follows from (13)–(15) that

$$m^{1/p} \le ACm^{1/2} + (C-1) \sum_{i=1}^{m} \alpha_{nk_i}^{1-\frac{1}{p}} \\ \le ACm^{1/2} + (C-1) \sum_{i=1}^{m} \frac{1}{2^{k_i}}$$

or

$$m^{1/p-1/2} \le AC + (C-1) \left(\sum_{k=1}^{m} \frac{1}{2^{k_k}} \right) m^{-1/2}.$$

This inequality holds only for $1/p-1/2 \le 0$, that is $p \ge 2$ and so it is a contradiction. This proves that $L^1(G) \cap L^p(G) \ne A^q(G)$. Therefore

 $\Phi E = A^q(G)$. By open mapping theorem (cf. Kelley, ..., [7] p. 99), E is a set of the first category in $A^q(G)$. It combines with Lemma 2 that $L^1(G) \cap L^p(G)$ is a dense set of the first category in $A^q(G)$; since $A^q(G)$ is complete, the set of functions in $A^q(G)$ which are not in $L^1(G) \cap L^p(G)$ must be of the second category and accordingly dense. Q.E.D.

In Theorem 1 we assume that G is non discrete group, however if G is discrete topological group, then we disprove the conjecture (8). Hence we establish the following

Remark. If G is a discrete topological abelian group, then $A^q(G) = l^1(G) \cap l^p(G)$ for any $p, q \ge 1$.

Proof. As G is discrete, \hat{G} is compact. It follows from that $l^1(G) = A^q(G)$ for any $q \ge 1$. And $l^1(G) \subset l^p(G)$ for any $p \ge 1$, we then have $l^1(G) \cap l^p(G) = l^1(G) = A^q(G)$. Q.E.D.

Acknowledgement. The author wishes to thank Prof. M. Fukamiya and Prof. J. Tomiyama for their valuable suggestions.

References

- [1] S. Banach: Théorie des opérations linéaires. Monografje Metematyczne, Warszawa (1932).
- [2] E. Hewitt: Fourier transforms of class L^p . Arkiv För Math., 2 (30), 571-574 (1954).
- [3] —: Ranges of certain convolution operators. Math. Scand., 15, 147-155 (1964).
- [4] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis. I. Springer-Verlag Berlin Gottingen Heit (1963).
- [5] Hang-Chin Lai: On some properties of Aq(G)-algebras (to appear).
- [6] Ron Larsen, Ten-Sun Liu, and Ju-Kwei Wang: On functions with Fourier transforms in L^p . Michigan Math. J., **11**, 369-378 (1964).
- [7] Kelley, Namioka: Linear Topological Spaces. Van Nostrand (1963).
- [8] I. E. Segal: The class of functions which are absolutely convergent Fourier transforms. Acta Sci. Math. Szeged, 12, 157-161 (1950).
- [9] A. Weil: L'intégration dans les groups topologiques et ses application. Act. Sci. et Ind., 1145, Hermann Paris (1965).