127. Surjectivity of Linear Mappings and Relations

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

In [3], Pták has proved the following theorem, in which (1) is called the closed relation theorem and (2) the open mapping theorem.

Theorem A. Let E be a Banach space, F a normed linear space, R a closed linear subspace of $E \times F$, T a continuous linear mapping of E into F, and let $0 < \alpha < \beta$. Let U and V be the unit balls of E and F respectively.

(1) If the set $RU + \alpha V$ contains a translate of βV , then RE = Fand $(\beta - \alpha)V \subset RU$.

(2) If the set $T(U) + \alpha V$ contains a translate of βV , then T(E) = Fand $(\beta - \alpha)V \subset T(U)$, so that T is open.

A theorem which is similar to the assertion (2) is obtained by McCord [2]:

Theorem B. Suppose T is a continuous linear mapping of a Banach space E into a normed linear space F, for which there are positive real numbers α and β , $\beta < 1$, such that the following holds. For each y in F of norm 1, there exists an x in E of norm $\leq \alpha$ such that $||y-Tx|| \leq \beta$. Then for each y in F, there exists an x in E such that y=Tx and $||x|| < \alpha(1-\beta)^{-1}||y||$.

Theorem A has been generalized by Baker [1]. In this paper we shall state other generalizations of Theorem A and a generalization of Theorem B.

Throughout this paper, vector spaces are over the real or the complex numbers. Let E and F be two vector spaces, A a subset of E, and R be a subset of $E \times F$. By R(A) we denote the set of all $y \in F$ such that $(x, y) \in R$ for some $x \in A$; the set $R(\{x\})$, where $x \in E$, will be denoted by R(x). S(A) denotes the union of all λA with λ in the closed unit interval [0, 1], and A is said to be *star-shaped* if S(A)=A.

The essential part of our results is included in the following

Lemma. Let E and F be two topological vector spaces, and R be a closed vector subspace of $E \times F$. Let B_0 be a sequentially complete bounded star-shaped convex subset of E such that $R(B_0) \neq \emptyset$, and let B be a bounded subset of F. Then $B \subset R(B_0) + \alpha B$ implies $(1-\alpha)B$ $\subset R(B_0)$ for every $\alpha \in [0, 1] = [0, 1] \setminus \{1\}$.

Proof. It suffices to consider the case where $\alpha \neq 0$. Let y be an arbitrary element of B. Since $B \subset R(B_0) + \alpha B$, there are points $x_1 \in B_0$

and $y_1 \in R(x_1)$ such that $y - y_1 \in \alpha B \subset R(\alpha B_0) + \alpha^2 B$. Therefore we have, for some $x_2 \in \alpha B_0$ and for some $y_2 \in R(x_2)$, $y - y_1 - y_2 \in \alpha^2 B \subset R(\alpha^2 B_0)$ $+ \alpha^3 B$. Thus we can find recursively two sequences $\{x_n | n=1, 2, \cdots\}$ and $\{y_n | n=1, 2, \cdots\}$ satisfying the following conditions 1)-3) for every $n=1, 2, \cdots$.

1)
$$x_n \in \alpha^{n-1}B_0.$$

2)
$$y_n \in R(x_n).$$

3)
$$y_n \in \alpha^n R$$

$$y - \sum_{i=1} y_i \in \alpha^n B$$

Since B_0 is star-shaped and convex, we have

$$\sum_{i=1}^n x_i \in B_0 + \alpha B_0 + \cdots + \alpha^{n-1} B_0 \subset \frac{1-\alpha^n}{1-\alpha} B_0 \subset \frac{1}{1-\alpha} B_0$$

for every $n=1, 2, \cdots$. From the boundedness of B_0 and 1), it is easy to see that the sequence $\left\{\sum_{i=1}^{n} x_i \mid n=1, 2, \cdots\right\}$ is a Cauchy sequence. Consequently, the sequence $\left\{\sum_{i=1}^{n} x_i \mid n=1, 2, \cdots\right\}$ converges to an element $x \in \frac{1}{1-\alpha} B_0$, since B_0 is sequentially complete. Now the condition 2) shows $\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right) \in R$, and the condition 3) implies, because of the boundedness of B, that the sequence $\left\{\sum_{i=1}^{n} y_i \mid n=1, 2, \cdots\right\}$ converges to y. Thus we have $(x, y) \in R$ or $(1-\alpha)y \in R(B_0)$, which establishes the lemma.

If $y \in R(x)$, then we have $B \subset R(B_0) + \alpha B$ for $B_0 = S(x)$, $B = \{y\}$, and $\alpha = 0$. Therefore we have the following

Theorem 1. Let E and F be two topological vector spaces, R a closed vector subspace of $E \times F$, and let $y \in F$. If $y \in R(x)$ for some $x \in E$, then

(*) there exist a sequentially complete bounded star-shaped convex subset B_0 of E and a bounded subset $B \subset F$ containing y such that $R(B_0) \neq \emptyset$ and $B \subset R(B_0) + \alpha B$ for some $\alpha \in [0, 1)$.

Conversely, if the condition (*) is satisfied, then $y \in R(x)$ for some

$$x \in \frac{1}{1-lpha}B_{\mathfrak{o}}$$

The graph of a continuous linear mapping of a topological vector space E into a Hausdorff topological vector space F is a closed vector subspace of $E \times F$. Hence the following corollary is evident.

Corollary 1. Let u be a continuous linear mapping of a topological vector space E into a Hausdorff topological vector space F, and let $y \in F$. If y = u(x) for some $x \in E$, then

(**) there exist a sequentially complete bounded star-shaped con-

vex subset B_0 of E and a bounded subset $B \subset F$ containing y such that $B \subset u(B_0) + \alpha B$ for some $\alpha \in [0, 1)$.

Conversely, if the condition (**) is satisfied, then y = u(x) for some

$$x\in\frac{1}{1-\alpha}B_0.$$

Theorem 1 yields obviously the following

Theorem 2. Under the hypothesis of Theorem 1, R(E) = F if and only if there exists a family \mathcal{B} of bounded subsets of F such that the union of all members of \mathcal{B} spans F and there correspond, to each $B \in \mathcal{B}$, a sequentially complete bounded star-shaped convex subset B_0 of E and an $\alpha \in [0, 1)$ satisfying the relations: $R(B_0) \neq \emptyset$ and $B \subset R(B_0)$ $+ \alpha B$.

Corollary 2. Under the hypothesis of Corollary 1, the mapping u is surjective if and only if there exists a family \mathcal{B} of bounded subsets of F such that the union of all members of \mathcal{B} spans F and there correspond, to each $B \in \mathcal{B}$, a sequentially complete bounded star-shaped convex subset B_0 of E and an $\alpha \in [0, 1)$ satisfying the relation $B \subset R(B_0)$ $+ \alpha B$.

Another consequence of Theorem 1 is the following

Theorem 3. Under the hypothesis of Theorem 1, if there exist a sequentially complete bounded star-shaped convex subset B_0 of E, a bounded subset B of F, a subset A of F absorbing each non-zero element of F, and an $\alpha \in [0, 1)$ such that $R(B_0) \neq \emptyset$, $B \subset S(A)$ and $A \subset R(B_0) + \alpha B$, then $(1-\alpha)A \subset R(B_0)$, and hence R(E) = F.

In fact, since $R(B_0)$ is star-shaped convex, we have $S(B) \subset S(A) \subset R(B_0) + \alpha S(B)$, and so $(1-\alpha)S(B) \subset R(B_0)$; consequently we have

 $(1-\alpha)A\subset(1-\alpha)S(A)\subset(1-\alpha)R(B_0)+\alpha(1-\alpha)S(B)$

 $\subset (1-\alpha)R(B_0) + \alpha R(B_0) \subset R(B_0).$

The following corollary is a generalization of Theorem B.

Corollary 3. Under the hypothesis of Corollary 1, if there exist a sequentially complete bounded star-shaped convex subset B_0 of E, a bounded subset B of F, a subset A of F absorbing each non-zero element of F, and an $\alpha \in [0, 1)$ such that $B \subset S(A)$ and $A \subset u(B_0) + aB$, then $(1-\alpha)A \subset u(B_0)$, and so u is surjective.

Remark. The well-known fact "a Hausdorff topological vector space E having a precompact neighborhood of 0 is of finite dimensional" follows immediately from the above lemma. In fact, since a precompact neighborhood is bounded, it is sufficient to show that if a bounded set B of E is covered by a finite number of translations of αB for some $\alpha \in [0, 1)$, then B spans a finite dimensional vector subspace of E. Now let $B \subset \bigcup_{i=1}^{n} (a_i + \alpha B), a_1, a_2, \dots, a_n \in E$. Then $B \subset e(S(A)) + \alpha B$, where A is the convex hull of the set $\{a_1, \dots, a_n\}$ and e is the

identity mapping of *E* into itself. Since S(A) is sequentially complete and bounded, by the above lemma we have $(1-\alpha)B \subset S(A)$ from which the desired conclusion follows.

References

- J. W. Baker: Operators with closed range. Math. Annalen, 174, 278-284 (1967).
- [2] M. C. McCord: A theorem on linear operators and the Tietze extension theorem. Amer. Math. Monthly, 75, 47-48 (1968).
- [3] V. Pták: Some metric aspects of the open mapping and closed graph theorems. Math. Annalen, 163, 95-104 (1966).