127. Surjectivity of Linear Mappings and Relations

By Shouro Kasahara

Kobe Uuiversity
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1969)

In [3], Pták has proved the following theorem, in which (1) is called the closed relation theorem and (2) the open mapping theorem.

Theorem A. Let E be a Banach space, F a normed linear space, R a closed linear subspace of $E \times F, T$ a continuous linear mapping of E into F, and let $0<\alpha<\beta$. Let U and V be the unit balls of E and F respectively.
(1) If the set $R U+\alpha V$ contains a translate of βV, then $R E=F$ and $(\beta-\alpha) V \subset R U$.
(2) If the set $T(U)+\alpha V$ contains a translate of βV, then $T(E)=F$ and $(\beta-\alpha) V \subset T(U)$, so that T is open.

A theorem which is similar to the assertion (2) is obtained by McCord [2]:

Theorem B. Suppose T is a continuous linear mapping of a Banach space E into a normed linear space F, for which there are positive real numbers α and $\beta, \beta<1$, such that the following holds. For each y in F of norm 1, there exists an x in E of norm $\leq \alpha$ such that $\|y-T x\| \leq \beta$. Then for each y in F, there exists an x in E such that $y=T x$ and $\|x\|<\alpha(1-\beta)^{-1}\|y\|$.

Theorem A has been generalized by Baker [1]. In this paper we shall state other generalizations of Theorem A and a generalization of Theorem B.

Throughout this paper, vector spaces are over the real or the complex numbers. Let E and F be two vector spaces, A a subset of E, and R be a subset of $E \times F$. By $R(A)$ we denote the set of all $y \in F$ such that $(x, y) \in R$ for some $x \in A$; the set $R(\{x\})$, where $x \in E$, will be denoted by $R(x)$. $S(A)$ denotes the union of all λA with λ in the closed unit interval [0,1], and A is said to be star-shaped if $S(A)=A$.

The essential part of our results is included in the following
Lemma. Let E and F be two topological vector spaces, and R be a closed vector subspace of $E \times F$. Let B_{0} be a sequentially complete bounded star-shaped convex subset of E such that $R\left(B_{0}\right) \neq \varnothing$, and let B be a bounded subset of F. Then $B \subset R\left(B_{0}\right)+\alpha B$ implies $(1-\alpha) B$ $\subset R\left(B_{0}\right)$ for every $\alpha \in[0,1)=[0,1] \backslash\{1\}$.

Proof. It suffices to consider the case where $\alpha \neq 0$. Let y be an arbitrary element of B. Since $B \subset R\left(B_{0}\right)+\alpha B$, there are points $x_{1} \in B_{0}$
and $y_{1} \in R\left(x_{1}\right)$ such that $y-y_{1} \in \alpha B \subset R\left(\alpha B_{0}\right)+\alpha^{2} B$. Therefore we have, for some $x_{2} \in \alpha B_{0}$ and for some $y_{2} \in R\left(x_{2}\right), y-y_{1}-y_{2} \in \alpha^{2} B \subset R\left(\alpha^{2} B_{0}\right)$ $+\alpha^{3} B$. Thus we can find recursively two sequences $\left\{x_{n} \mid n=1,2, \cdots\right\}$ and $\left\{y_{n} \mid n=1,2, \cdots\right\}$ satisfying the following conditions 1)-3) for every $n=1,2, \cdots$.
1)
2)

$$
\begin{gathered}
x_{n} \in \alpha^{n-1} B_{0} . \\
y_{n} \in R\left(x_{n}\right) .
\end{gathered}
$$

3)

$$
y-\sum_{i=1}^{n} y_{i} \in \alpha^{n} B .
$$

Since B_{0} is star-shaped and convex, we have

$$
\sum_{i=1}^{n} x_{i} \in B_{0}+\alpha B_{0}+\cdots+\alpha^{n-1} B_{0} \subset \frac{1-\alpha^{n}}{1-\alpha} B_{0} \subset \frac{1}{1-\alpha} B_{0}
$$

for every $n=1,2, \cdots$. From the boundedness of B_{0} and 1), it is easy to see that the sequence $\left\{\sum_{i=1}^{n} x_{i} \mid n=1,2, \cdots\right\}$ is a Cauchy sequence. Consequently, the sequence $\left\{\sum_{i=1}^{n} x_{i} \mid n=1,2, \cdots\right\}$ converges to an element $x \in \frac{1}{1-\alpha} B_{0}$, since B_{0} is sequentially complete. Now the condition 2) shows $\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} y_{i}\right) \in R$, and the condition 3) implies, because of the boundedness of B, that the sequence $\left\{\sum_{i=1}^{n} y_{i} \mid n=1,2, \cdots\right\}$ converges to y. Thus we have $(x, y) \in R$ or $(1-\alpha) y \in R\left(B_{0}\right)$, which establishes the lemma.

If $y \in R(x)$, then we have $B \subset R\left(B_{0}\right)+\alpha B$ for $B_{0}=S(x), B=\{y\}$, and $\alpha=0$. Therefore we have the following

Theorem 1. Let E and F be two topological vector spaces, R a closed vector subspace of $E \times F$, and let $y \in F$. If $y \in R(x)$ for some $x \in E$, then
(*) there exist a sequentially complete bounded star-shaped convex subset B_{0} of E and a bounded subset $B \subset F$ containing y such that $R\left(B_{0}\right) \neq \varnothing$ and $B \subset R\left(B_{0}\right)+\alpha B$ for some $\alpha \in[0,1)$.

Conversely, if the condition (*) is satisfied, then $y \in R(x)$ for some

$$
x \in \frac{1}{1-\alpha} B_{0} .
$$

The graph of a continuous linear mapping of a topological vector space E into a Hausdorff topological vector space F is a closed vector subspace of $E \times F$. Hence the following corollary is evident.

Corollary 1. Let u be a continuous linear mapping of a topological vector space E into a Hausdorff topological vector space F, and let $y \in F$. If $y=u(x)$ for some $x \in E$, then
(**) there exist a sequentially complete bounded star-shaped con-
vex subset B_{0} of E and a bounded subset $B \subset F$ containing y such that $B \subset u\left(B_{0}\right)+\alpha B$ for some $\alpha \in[0,1)$.

Conversely, if the condition (**) is satisfied, then $y=u(x)$ for some

$$
x \in \frac{1}{1-\alpha} B_{0} .
$$

Theorem 1 yields obviously the following
Theorem 2. Under the hypothesis of Theorem $1, R(E)=F$ if and only if there exists a family \mathcal{B} of bounded subsets of F such that the union of all members of \mathcal{B} spans F and there correspond, to each $B \in \mathscr{B}$, a sequentially complete bounded star-shaped convex subset B_{0} of E and an $\alpha \in[0,1)$ satisfying the relations: $R\left(B_{0}\right) \neq \varnothing$ and $B \subset R\left(B_{0}\right)$ $+\alpha B$.

Corollary 2. Under the hypothesis of Corollary 1, the mapping u is surjective if and only if there exists a family \mathcal{B} of bounded subsets of F such that the union of all members of \mathscr{B} spans F and there correspond, to each $B \in \mathscr{B}$, a sequentially complete bounded star-shaped convex subset B_{0} of E and an $\alpha \in[0,1)$ satisfying the relation $B \subset R\left(B_{0}\right)$ $+\alpha B$.

Another consequence of Theorem 1 is the following
Theorem 3. Under the hypothesis of Theorem 1, if there exist a sequentially complete bounded star-shaped convex subset B_{0} of E, a bounded subset B of F, a subset A of F absorbing each non-zero element of F, and an $\alpha \in[0,1)$ such that $R\left(B_{0}\right) \neq \varnothing, B \subset S(A)$ and $A \subset R\left(B_{0}\right)$ $+\alpha B$, then $(1-\alpha) A \subset R\left(B_{0}\right)$, and hence $R(E)=F$.

In fact, since $R\left(B_{0}\right)$ is star-shaped convex, we have $S(B) \subset S(A)$ $\subset R\left(B_{0}\right)+\alpha S(B)$, and so $(1-\alpha) S(B) \subset R\left(B_{0}\right)$; consequently we have $(1-\alpha) A \subset(1-\alpha) S(A) \subset(1-\alpha) R\left(B_{0}\right)+\alpha(1-\alpha) S(B)$ $\subset(1-\alpha) R\left(B_{0}\right)+\alpha R\left(B_{0}\right) \subset R\left(B_{0}\right)$.
The following corollary is a generalization of Theorem B.
Corollary 3. Under the hypothesis of Corollary 1, if there exist a sequentially complete bounded star-shaped convex subset B_{0} of E, a bounded subset B of F, a subset A of F absorbing each non-zero element of F, and an $\alpha \in[0,1)$ such that $B \subset S(A)$ and $A \subset u\left(B_{0}\right)+a B$, then $(1-\alpha) A \subset u\left(B_{0}\right)$, and so u is surjective.

Remark. The well-known fact "a Hausdorff topological vector space E having a precompact neighborhood of 0 is of finite dimensional" follows immediately from the above lemma. In fact, since a precompact neighborhood is bounded, it is sufficient to show that if a bounded set B of E is covered by a finite number of translations of αB for some $\alpha \in[0,1)$, then B spans a finite dimensional vector subspace of E. Now let $B \subset \cup_{i=1}^{n}\left(a_{i}+\alpha B\right), a_{1}, a_{2}, \cdots, a_{n} \in E$. Then $B \subset e(S(A))$ $+\alpha B$, where A is the convex hull of the set $\left\{a_{1}, \cdots, a_{n}\right\}$ and e is the
identity mapping of E into itself. Since $S(A)$ is sequentially complete and bounded, by the above lemma we have $(1-\alpha) B \subset S(A)$ from which the desired conclusion follows.

References

[1] J. W. Baker: Operators with closed range. Math. Annalen, 174, 278-284 (1967).
[2] M. C. McCord: A theorem on linear operators and the Tietze extension theorem. Amer. Math. Monthly, 75, 47-48 (1968).
[3] V. Pták: Some metric aspects of the open mapping and closed graph theorems. Math. Annalen, 163, 95-104 (1966).

