158. On the Bi-ideals in Semigroups

By Sándor Lajos
K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 13, 1969)

Let S be a semigroup, and A be a non-empty subset of S. We shall say that A is a bi-ideal or (1, 1)-ideal of S if the following conditions hold :
(i) A is a subsemigroup of S.
(ii) $A S A \subseteq A$.

The notion of bi-ideal was introduced by R. A. Good and D. R. Hughes [2]. It is also a special case of the (m, n)-ideal introduced by the author [4].

In this short note we give a summary of some results concerning the bi-ideals of semigroups, and we announce some new results. For the terminology not defined here we refer to the books by A. H. Clifford and G. B. Preston [1]. Proofs of the results will not be given.

Theorem 1. Let S be an arbitrary semigroup. Then any left (right, two-sided, and quasi-) ideal of S is a bi-ideal of S.

Theorem 2. Suppose that A_{1}, \cdots, A_{n} are bi-ideals of a semigroup S. Then the intersection $B=\bigcap_{i=1}^{n} A_{i}$ either is empty or it is a bi-ideal of S.

We say that a bi-ideal A of a semigroup S is a proper bi-ideal of S_{\star} if A is a proper subset of S, that is, the set $S-A$ is not empty. It is easy to see that a group has not proper bi-ideals, and what is more this property characterizes the class of groups among semigroups.

Theorem 3. A semigroup S is a group if and only if it has not proper bi-ideals.

By a bi-ideal of a semigroup S generated by a non-empty subset A of S we mean the smallest bi-ideal of S containing A. Let us denote this bi-ideal by $(A)_{(1,1)}$. If the set A consists of a single element then the bi-ideal of S generated by A is said to be a principal bi-ideal of S. It is easy to show that the following assertion is true.

Theorem 4. Let a be an arbitrary element, and A be a non-empty subset of S. Then $(A)_{(1,1)}=A \cup A^{2} \cup A S A$ and $(a)_{(1,1)}=a \cup a^{2} \cup a S a$.

An important property of the bi-ideals is formulated in the following theorem. This was proved by the author (see [6], first part).

Theorem 5. Let A be a bi-ideal and B be a non-empty subset of $S . \quad$ Then the products $A B$ and $B A$ are bi-ideals of S.

Suppose that \bar{S} is the multiplicative semigroup of all non-empty subset of S, and S_{1} is the set of all bi-ideals of S. Then by Theorem 5 the set S_{1} is a semigroup under the multiplication of subsets, and the subsemigroup S_{1} is a two-sided ideal of \bar{S}.

Theorem 6. Let A, B be bi-ideals of the semigroup S. Then the products $A B$ and $B A$ are also bi-ideals of S.

As a simple consequence of Theorem 6 we obtain the following result.

Theorem 7. Let P, Q be quasi-ideals of a semigroup S. Then the products $P Q$ and $Q P$ are bi-ideals of S.

It is known the following characterizations of the bi-ideal. (See [5] and [1].)

Theorem 8. A non-empty subset B of a semigroup S is a bi-ideal of S if and only if any one of the following assertions holds:
(A) There exists a left ideal L of S such that B is a right ideal of L.
(B) There exists a right ideal R of S so that B is a left ideal of R.
(C) There exists a left ideal L and a right ideal R of S such that (1) $R L \subseteq B \subseteq R \cap L$.
In what follows we shall say that S is regular if to any element a of S there exists an element x in S such that the condition

$$
\begin{equation*}
a x a=a \tag{2}
\end{equation*}
$$

holds. It is known that a semigroup S is regular if and only if the relation
(3)

$$
L \cap R=R L
$$

holds for any left ideal L and for any right ideal R of S. This criterion and Theorem 8 imply the following result.

Theorem 9. Let S be a regular semigroup and A be a non-empty subset of S. Then A is a bi-ideal of S if and only if it may be represented in the form

$$
\begin{equation*}
A=R L, \tag{4}
\end{equation*}
$$

where L is a left ideal and R is a right ideal of S.
The author recently obtained the following characterizations of regular semigroups by means of bi-ideals.

Theorem 10. A semigroup S is regular if and only if
(5)
$(a)_{(1,1)}=a S a$
for each element a of S.
Theorem 11. A semigroup S is regular if and only if
$(a)_{(1,1)}=(a)_{R}(a)_{L}$
for every element a of $S .(a)_{L}$ denotes the principal left ideal of S generated by the element a in S.

A semigroup S is said to be a duo semigroup if every one-sided
(left or right) ideal of S is a two-sided ideal. Theorem 9 has an interesting consequence for the case of regular duo semigroups.

Theorem 12. Let S be a regular duo semigroup. Then every bi-ideal of S is a two-sided ideal of S.

It is known that a semigroup S which is a semilattice of groups is both regular and duo semigroup. (See the author's paper [10].) Therefore Theorem 12 implies the following result.

Theorem 13. Let S be a semigroup which is a semilattice of groups. Then each bi-ideal of S is a two-sided ideal of S.

Corollary. Let S be a semigroup which is a semilattice of groups. Then every quasi-ideal Q of S is a two-sided ideal of S.

It may be noted that Theorems 12, 13 remain true with (m, n)ideal instead of bi-ideal.

Theorem 14. Suppose that S is a regular duo semigroup, and m, n are arbitrary non-negative integers such that $m+n>0$. Then every (m, n)-ideal of S is a two-sided ideal of S.

Theorem 15. Let S be a semigroup which is a semilattice of groups, and let m, n are arbitrary non-negative integers such that $m+n>0$. Then any (m, n)-ideal of S is a two-sided ideal of S.

References

[1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. I, II. Amer. Math. Soc., Providence, R. I. (1961, 1967).
[2] R. A. Good and D. R. Hughes: Associated groups for a semigroup. Bull. Amer. Math. Soc., 58, 624-625 (1952).
[3] R. J. Koch and A. D. Wallace: Maximal ideals in compact semigroups. Duke Math. J., 21, 681-686 (1954).
[4] S. Lajos: On (m, n)-ideals of semigroups. Abstracts of Second Hungar. Math. Congress I, 42-44 (1960).
[5] --: Generalized ideals in semigroups. Acta Sci. Math., 22, 217-222 (1961).
[6] --: On the theory of ideals in semigroups. I, II (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 11, 57-66 (1961) ; 14, 293-299 (1964).
[7] ——: Notes on (m, n)-ideals. I-III. Proc. Japan Acad., 39, 419-421 (1963) ; 40, 631-632 (1964); 41, 383-385 (1965).
[8] -: On (m, n)-ideals in homogroups (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 18, 41-44 (1968).
[9] -: On characterization of regular semigroups. Proc. Japan Acad., 44, 325-326 (1968).
[10] -: On semigroups which are semilattices of groups: Acta Sci. Math., 30, 133-135 (1969).
[11] -: On (m, n)-ideals in subcommutative semigroups. Elem. Math., 24, 39-40 (1969).
[12] --: On (m, n)-ideals in regular duo semigroups. Acta Sci. Math. (to appear).

