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151. On Wiener Compactification of a Riemann Surface
Associated with the Equation du=pu

By Hidematu TANAKA
Mathematical Institute, Nagoya University

(Comm. by Kinjir6 KUNUGI, M. J. A., Oct. 13, 1969)

1. We consider an elliptic partial differential equation
) du=pu

on a Riemann surface R, where 4=0%0x*+0%0y* and p is a non-
negative and continuously differentiable function of local parameters
z such that the expression p(z)|dz | is invariant under the change of
local parameters z. We call such a function p a density on R.

The investigation of the global theory of (x) was begun by M.
Ozawa [8] and continued by many others (for example, L. Myrberg
[4], H. L. Royden [9], M. Nakai [5] [6] and F. Maeda [3]).

Associated with the equation (x), Wiener functions and the Wiener
compactification R%p, of R are discussed; more generally the Wiener
compactification of harmonic spaces is studied by C. Constantinescu
and A. Cornea [2]. In this note we shall examine how the Wiener
compactification depends on a density p, and we shall give the follow-
ing result (Theorem 4); If p and ¢ are two densities on R satisfying

@ ag<p<Laq
on R for some constant a«>1, or
(ID) [ 1p@—a@) dedy<oo

then there exists a homeomorphism @* of R, onto R}, such that
O*(ywo)=1I"we, where I'yo (or I'yqd) is a harmonic boundary of R%«
(or R¥aq).

2. Let 2 be an open subset of a Riemann surface B. A func-
tion % on 2 is called p-harmonic on 2 if % is twice continuously differ-
entiable and satisfies (x). A p-superharmonic function is defined as
usual (see [8]). We know that a twice continuously differentiable
function s on 2 is p-superharmonic on 2 if and only if 4s—ps<0on 2.
Let @ be an arbitrary point on R. L. Myrberg [4] proved that if
p=x0, there exists always the Green function of R with pole at a for
the equation (x). We denote it by g2:=.

3. A real-valued function f on R is called a p-Wiener function
when f is quasicontinuous and has a p-superharmonic majorant and
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for any subdomain 2, f is p-harmonizable on 2V : the totality of -
Wiener functions on R is denoted by W»(R). A p-Weiner function f
with hZ-F=0 is called a p-Wiener potential on R: the totality of p-
Wiener potentials on R is denoted by W2(R). We have the following
facts similarly to [1].

(a) The class W2(R) (or W2(R)) is a vector lattice with respect to
maximum and minimum.

() A non-negative p-superharmonic function is a p-Wiener
function.

(¢) A bounded p-Wiener function f has a unique decomposition
JS=h%E+ f,, where f, is a bounded p-Wiener potential on R.

(d) Let {R,} be an exhaustion® of B and f be continuous and p-
harmonizable on R. Then hZ:F=lim HZ:*»» on R.

n—o

(e) If f is a bounded continuous function and has the property
(V)? (or (V)?),” then f is a p-Wiener function (or p-Wiener potential).

4. From now on, we denote by BW?»(R) the totality of bounded
continuous p-Wiener functions on R and by BH?(R) the totality of
bounded p-harmonic functions on R. As to the dependence of the
class BW?(R) (or BW?(R)) on p we have the following lemmas.

Lemma 1. Let p and q be two densities on R such that q<p on
R. Then BWYR)C BWZ(R) and BW«R)C BW»(R).

Proof. Let f be a real-valued bounded function on R. Then it
is easily seen that W2, ,c W2E  » and W2ZE, ,C W2F and so that
RBE ;o <h&E . and h2E<h2Z ... Hence we have h2?<h%*\/0, and
replacing f by —f, we obtain that h2#>h%%AN\0. By these facts we
have BWIR)CBW?2(R). Let f be a function in BW%R). Then by
(a), f*=max(f, 0) is also a function in BW%R). Hence by the above
agsertion we see that f*—h%F is a function in BWZ(R). On the other
hand, h%F is a non-negative p-superharmonic function and so by (b)
it is a function in BW»(R). Hence f* is a function in BW?»(R).
Similarly f-=max (—f, 0) is a function in BW»(R), so that BWY(R)
CBW2(R).

1) The p-harmonizability is defined analogously to the usual one: We set
Tv?” ={s; p-superharmonic on £ and s>f on 2-K for some compact set K},
wh?={s; —s e w9} and KL% (@)=inf {s(a); s ¢ wE?}, hT%(a)=sup {s(a); s e wh?}.
When h2?=h%?=h%?, we say that f is p-harmonizable on 2; we note that A%?
is p-harmonic on 2.

2) We always consider a regular exhaustion.

3) We denote by H?R" a function continuous on E, and p-harmonic on R,
and equal to f on 9R,.

4) It means that the sequence {H ‘;’R"} converges (or converges to 0) for any
exhaustion {R,} of R.
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Lemma 2. Let p be a density on R. Then BW2(R)=BW:?(R)
for any positive constant «.

Proof. We may assume that 0<a<1l. By Lemma 1, we have
only to show that BW2(R)C BW:?(R). Let f be a function in BW2(R).
Without loss of generality we may assume that 0< f<1. It is easy
to see that

Hr},RnsH;p,RnS(Hg,Rn)a
on R, for any exhaustion {R,} of R. By (d), lim H%*»=0 and so f

n—0

hag the property (V):?. Hence by (e), f is a function in BW;?(R).

As to the dependence of the class BH?(R) on a density p, H. L.
Royden [9] proved the following lemma.

Lemma 3. If p and q are two densities on R satisfying the con-
dition (I), then there exists an tsomorphism  of BH?(R) onto BHYR).

We shall extend this fact to the class BWr(R).

Theorem 1. If p and q are two densities on R satisfying the
condition (I), then BW?(R) and BWUR) are isomorphic.

Proof. By Lemma 3 there exists an isomorphism = of BH?(R)
onto BHYR). Since a"¢<p<aq on R, we have BW?(R)=BWR)
by Lemmas 1 and 2. Let f be a function in BW?(R), then there exists
uniquely a function f, in BW2(R) such that f=h2%+f,. We define a
mapping p as follows:

p(N=nh%®)+ 1,
Then it is easy to see that p is an isomorphism of BW?(R) onto BW(R).

5. M. Nakai [6] proved that if two densities p and q satisfy the
condition (IT), then BH?(R) and BH%R) are isomorphic.

Using his method we shall prove the following

Theorem 2. If p and q satisfy the condition (1D),

BW?(R)=BWR).

Proof. Let {R,} be an exhaustion of R. Given a real-valued
bounded continuous function f on R, we define a transformation T'f
as follows:

Tf(zo)=f(z0)+—2—17?”1?(10(@—q(z))gZ;R(z)f(z)dwdy
We also define a transformation T, f for a function f on R, as follow:
Tnf<zo)=f(zo)+%“}2 02— 42)9%*(2) f (2 dewdy

These are well-defined in virtue of the condition (II). By the Green
formula we have easily that T,H%2®~=H%%», M. Nakai [6] proved
that if a uniformly bounded sequence {f,} of continuous functions f,
on R, converges to a function f uniformly on each compact subset,
then for each point z, in R
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(Gek) Tfzy)=lmT,f (2.

If f is a function in BW?(R), then the sequence {H%%»} is uniformly
bounded and by (d), {H%%»} converges to h2* uniformly on each com-
pact subset, hence by the above assertion, lim T,H%®»=Th%~, so that

the sequence {H%*~} converges to Th%¥, namely f has the property
(V)4. Thus BW»(R)c BWYR). By replacing p and ¢ we have BWY(R)
CcBW?(R) and BW?(R)=BW%R).

Remark. As M. Nakai [6] remarked, (xx) can be proved under
the following weaker condition:

av J f P@®—a@ [ (957(@) + g4 (@) dady < oo

for some points 2z, and 2z, in R. Therefore we have the equality BW?(R)
=BWR) for any p and ¢ satisfying the condition (II).

6. Let R%» be a BW’(R)-compactification of R and I'y» be a
harmonic boundary of RE» (cf. [1]).

As to the dependence of R%» on a density p, we have the following
fact as a corollary of Nakai’s theorem (see [7]).

Theorem 3%. Consider arbitrary two Riemann surfaces R and
R'. Letp be a density on R and p’ be a density on R’. If BW?(R)
and BW?'(R’) are isomorphic, then there exists a homeomorphism @*
of Rt» onto R'%p such that O*(Iyo)=1"ys.

By Theorems 1, 2 and 3, we have

Theorem 4. If p and q are two densities on R satisfying the
condition (I) or (II), then there exists a homeomorphism ®* of R¥%p
onto R¥q such that O*(yp)=1"wa.

Remark. (i) By the remark on Theorem 2 we see that the condi-
tion (II) can be replaced by the weaker condition (II).

(ii) When p or ¢ is identically zero in the condition (II) (or (II)'),
R is assumed to be a hyperbolic Riemann surface.
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