143. On a Property of $p-1$

By Yoichi Motohashi
Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo

(Comm. by Zyoiti Suetuna, m. J. A., Oct. 13, 1969)

Erdös [1] proved in an ingenious manner that the density of the integers having a divisor between n and $2 n$ tends to zero as n tends to infinity.

The purpose of this short note is to prove that the same fact holds for the sequence $\{p-1\}$, where p denotes a prime. More precisely we shall prove the following

Theorem. The density, with respect to the sequence of all primes, of the prime p such that $p-1$ has a divisor between n and n $\exp \left(h^{-1}(n) \log \log n\right)$ tends to zero as n tends to infinity, where $h(n)$ is an arbitrary increasing function such that $h(n) \rightarrow \infty$ and $h^{-1}(n) \operatorname{loglog}$ $n \rightarrow \infty$ as $n \rightarrow \infty$.

For the proof of the theorem we need three lemmas:
Lemma 1. Let $\omega(m)$ be the number of all prime divisors of m. Then, if $1 / 2 \leq a<1$, we have

$$
\sum_{\substack{n \leq m \leq n \exp (n-1(n) \log \log n) \\ \omega(m) \leq \alpha \log \log n}} m^{-1}=0\left\{\log ^{\sigma_{\alpha-1}} n \log \log n\right\},
$$

where $\gamma_{a}=a-a \log a$.
This is a trivial modification of Lemma 7 of Hooley [2].
Lemma 2. Let $\omega_{n}(m)$ be the number of all prime divisors less than n of m. Then for $n \leq \log x$ we have

$$
\sum_{p \leq x}\left(\omega_{n}(p-1)-\log \log n\right)^{2}=0(\pi(x) \log \log n),
$$

where $\pi(x)$ is the number of primes not exceeding x.
Lemma 3. If c and n are less than $\log x$, then we have

$$
\sum_{\substack{p \leq x \\ p \equiv 1(\bmod c)}}\left(\omega_{n}\left(\frac{p-1}{c}\right)-\log \log n\right)^{2}=0\left(\frac{\pi(x)}{\varphi(c)} \log \log n\right),
$$

where $\varphi(c)$ is the Euler function.
Above two lemmas are easy applications of the Siegel-Walfisz Theorem [3, Satz 8.3].

Proof of the theorem. As in [1] we divide the integers lying between n and $n \exp \left(h^{-1}(n) \log \log n\right)$ into two classes. Namely, in the first class we put the integers $b_{1}, b_{2}, \cdots, b_{y}$ having at most $\frac{2}{3} \log \log n$ prime divisors and in the second class the integers c_{1}, \cdots, c_{z} having more than $\frac{2}{3} \log \log n$ prime divisors.

Now the number of primes $p \leq x$ such that $p-1$ is divisible by at most one b is less than

$$
\begin{align*}
\sum_{i \leq y} \sum_{\substack{\left.p=1 i \bmod b_{i}\right) \\
p \leq x}} & \ll \sum_{i \leq y} \frac{\pi(x)}{\varphi\left(b_{i}\right)} \tag{1}\\
& \ll \pi(x) \log \log n \sum_{i \leq y} b_{i}^{-1}
\end{align*}
$$

since $\varphi\left(b_{i}\right) \gg b_{i} / \log \log n$. Here the last sum is
(2) $\quad 0\left((\log n)^{r^{2}-1} \log \log n\right)=0\left((\log n)^{-0.06)}\right.$, by Lemma 1 and the definition of $b^{\prime} s$.

Again as in [1] we arrange the primes $p \leq x$ such that $p-1$ is divisible by a c into two sets. In the first class we put those of the form $p-1=c_{1} k$ where k has at most $\frac{2}{3} \log \log n$ prime divisors less than n. Then the number of primes in this class is less than

$$
\begin{align*}
& o\left\{\frac{\pi(x)}{\log \log n} \sum_{j \leq z} \frac{1}{\varphi\left(c_{j}\right)}\right\} \\
& \quad=O\left\{\frac{\pi(x)}{\log \log n}{ }_{n \leq m \leq n \exp \left(h^{-1}(n) \log \log n\right)} \varphi^{-1}(m)\right\} \tag{3}\\
& \quad=o\left\{h^{-1}(n) \pi(x)\right\}
\end{align*}
$$

since Lemma 3 and the fact that there exist two constants B_{1} and B_{2} such that

$$
\sum_{m \leq M} \varphi^{-1}(m)=B_{1} \log M+B_{2}+o\left(\frac{1}{\log M}\right)
$$

Obviously for the primes in the second class we have

$$
\omega_{n}(p-1) \geq \frac{4}{3} \log \log n
$$

and hence from Lemma 2 the number of primes in the second class is

$$
\begin{equation*}
O\left(\frac{\pi(x)}{\log \log n}\right) \tag{4}
\end{equation*}
$$

Therefore from (1), (2), (3) and (4) we can conclude that the desired density is

$$
O\left(h^{-1}(n)\right) .
$$

This proves the theorem.

References

[1] P. Erdös: Note on sequence of integers no one of which is divisible by any other. J. London Math. Soc., 10, 126-128 (1935).
[2] C. Hooley: On the representation of a number as the sum of two squers and a prime. Acta Math., 97, 189-210 (1957).
[3] K. Pracher: Primzahlverteilung. Springer (1957).

