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Erdos [1] proved in an ingenious manner that the density of the
integers having a divisor between n and 2n tends to zero as n tends to
infinity.

The purpose of this short note is to prove that the same fact holds

for the sequence {p—1}, where p denotes a prime. More precisely we
shall prove the following

Theorem. The density, with respect to the sequence of all
primes, of the prime p such that p—1 has a divisor between n and n
exp (h~Y(n) loglog n) tends to zero as n tends to infinity, where h(n) is
an arbitrary increasing function such that h(n)—co and h'(n) loglog
NnN—oco aS N— 0o,

For the proof of the theorem we need three lemmas:

Lemma 1. Let w(m) be the number of all prime divisors of m.
Then, if 1/2<a<1, we have

m~'=0{log*"'n log log n},

n<m<n exp(h—1(n)loglog n)
w(m)<alog log n

where y,=a—aloga.

This is a trivial modification of Lemma 7 of Hooley [2].

Lemma 2. Let w,(m) be the number of all prime divisors less
than n of m. Then for n<log x we have

> (w.(p—1)—log log n)*=0(x(x) log log n),

Pz
where 7 (x) is the number of primes not exceeding x.
Lemma 3. If ¢ and n are less than log x, then we have

5 (wn (p—l) — log log n)zzo( () log log n) ,
_piw c (o)
p=l@mod ¢)
where ¢(c) is the Euler function.
Above two lemmas are easy applications of the Siegel-Walfisz
Theorem [3, Satz 8.3].
Proof of the theorem. As in [1] we divide the integers lying

between # and n exp (h~'(n) log log n) into two classes. Namely, in

the first class we put the integers b, 0,, - - -, b, having at most% loglogn

prime divisors and in the second class the integers ¢y, - - -, ¢, having

more than % log log n prime divisors.
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Now the number of primes p <« such that p—1 is divisible by at
most one b is less than

(1) sy <<Zrc(x)

i< =1(mod b i<
i<y p=itmotoy i<y o(b,)

& m(z) log logn 3 b;Y,

1<y

since ¢(b,) >b,/log log n. Here the last sum is
(2) 0((log n)8~* log log n) = 0((log n)~**,
by Lemma 1 and the definition of b’s.
Again as in [1] we arrange the primes p<« such that p—1 is
divisible by a ¢ into two sets. In the first class we put those of the

form p—1=c¢,k where k has at most —g—log log n prime divisors less

than n. Then the number of primes in this class is less than
0{ () 1 }
log log n == ¢(c))
(8) _ 0{ m(x)
log lOg N n<m<n exp (h—1(n)log log n)
=of{h~'(n)m(x)},
since Lemma 3 and the fact that there exist two constants B, and B,
such that

go"(m)}

1
~{m)=B, log M+ B ( )
m§M¢ () 1108 M+ Byto log M

Obviously for the primes in the second class we have
w,(p—1) 2g~log log n,

and hence from Lemma 2 the number of primes in the second class is
(4) 0 (_.1@_) .
log log n
Therefore from (1), (2), (83) and (4) we can conclude that the
desired density is
O(h~(n)).
This proves the theorem.
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