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1. A formal power series f= f, a,X* with coefficients in a linearly
=0

topological ring A is called a restricted formal power series if the
sequence of its coefficients {a;} converges to 0. All of such formal
power geries forms a subring of the formal power series ring A[[X]],
which is called a restricted formal power series ring and denoted by
A{X}.

In [5], Samuel has obtained the following result:

Let A be a Noetherian complete local integral domain, and G a
finite group consisting of A-automorphisms of A[[X]]. Then there
exists a formal power series f such that the G-invariant subring of
A[[XT1] is AILfIT.

This is a generalization of the result of Lubin [2] which dealt with
the case where A is the ring of p-adic integers and G is given by using
a formal group law.

The main purpose of this paper is to prove the following:

Theorem. Let A be a Noetherian complete integral domain
with the maximal ideal m, and G a finite group consisting of A-auto-
morphisms of A{X}. If the residue class field A/m is perfect, there
exists o series fe A{X} such that the G-invariant subring A{X}¢ of
A{X} 15 A{f}.

2. At first, we shall show some results concerning A{X}.

Lemma 1. Let A be a linearly topological ring whose topology is
complete and T,. Then, A{X+a}=A{X} for any ac A.

Proof. For any fzi a(X+a) e A{X +a}, we have f=i] b, X¢
1=0 =0

in A[[X]], where {b;} converges to 0. Hence, f e A{X]}.
If o is an ideal of 4, by a{X} we denote the ideal of A{X} consisting

of all series > a,X% a; € a.
1=0

Lemma 2. Let A be a linearly topological ring whose topology is
complete and T,. Let m be a closed ideal of A such that every mem
is topologically nilpotent. If f e A{X} is a series such that f=f mod
m{X} is @ unitary polynomial with the degree s=1, then A{X} is the
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finite module over its subring A{f} with the free base {1, X, ---, X*7'}.

Proof. Let M be the A{f}-module with the free base {1, X, - - -,
X+1}. Let {m,} be a family of ideals which defines the topology
in A. Since by Lemma 1 we can assume that f(0)=0, we have
rm{X}c X*m,{X} for any n and 4. Therefore A{X} is complete and
T, with respect to the topology defined by {f"m,{X}}, ie. A{X}
=lim A{X}/ f*m,{X}. M is complete and T, with respect to the

(3
topology as a finite A{f}-module, i.e. M=lim M/f"m,{X}M. In [4],
<«

Salmon has proved the preparation theorem frgljr A{X}: For any g € A{X}
there exists a unique h e A{X} such that g-f% is a polynomial with the
degree at most s—1. In its proof it is shown that if a is an ideal of
A and gea{X} then hea{X}. Therefore, for any » and for any
pair 4, g such that m,Dm,, f*m{X}/f"*'m{X} is isomorphic to
Srm{ 1M/ " 'm, (XIM as an A{f}-module. Hence, it follows from
Lemma 2 of [6] (p. 89) that A{X} is isomorphic to M.

A-automorphisms of A{X} are characterized as follows:

Proposition 1. Let A be a local integral domain with the maximal
ideal m. If A s complete and T,, then any A-automorphism  of A{X}
s given as follows ;

vX=a,+a,X +a,X*+a,X*+ - - - ¢ A{X]},

where a,e A, a, € A—m, and a; e m if 1=2,
‘and
Jya=a if ac A.

Proof. + is an A-automorphism of A{X} if and only if A{y-X}
=A{X} since VA{X}=A{yX}. By Lemma 1 we can assume that
¥X ¢ m{X}. Let s be the degree of X mod m{X}. If s=0, then X
is inversible in A{X} [4]. Then it follows from Lemma 2 that « is an
A-automorphism if and only if s=1.

The following two lemmas will be used to prove Proposition 2.

Lemma 3. Let R be a Noetherian complete local integral domain
with the completion R*. If R* is an integrally closed integral domain,
then R is also integrally closed.

Proof. This is a well-known result (for example, see [3], p. 135).

Lemma 4. Let R be an integrally closed integral domain with
the maximal ideal m, K the quotient field, and k the residue class field
of Rmodm: k=R/m. If f e R[X] s an irreducible unitary polynomial
such that f= fmod(m)ec k[X] s irreducible and separable, then
R’'=RI[X]/(f) is the integral closure of R in L=KI[X]1/(f) and is a local
ring with the maximal ideal mR’.

Proof. Since the maximal ideal of R’ corresponds to the
irreducible component of f, it is obvious that R’ is a local ring. If R*
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is the integral closure of R in L, we have dR*C R'C R* where d is the
discriminant of f. Since f is separable, d is not in m. Hence, it
follows that R'=R*.

Proposition 2. Let A be a Noetherian integrally closed complete
local integral domain with the mazximal ideal m. If the residue class
field k=A/m is perfect, then A{X} is integrally closed

Proof. Since m{X} is the Jacobson radical of A{X} [4] and
A{X}/m{X}=Ek[X], every maximal ideal I of A{X} is in the form of
M=(m, f)A{X}, where fe A[X] is a unitary polynomial such that
f=/fmod m{X}e k[X] is irreducible. We have A{X}:Q A{X} . 1)»

where f runs the set of polynomials in A[X] satisfying the above
conditions. A{X} is integrally closed if and only if A{X}, , is
integrally closed for all f. If f=X, the completion of the local ring
A{X} i x, is A[[X]] which is integrally closed. It follows from Lemma
3 that A{X}, x, is integrally closed. If f=X‘+a, X'+ .- -+, X+a,
then by Lemma 2 we have A{X}=A{f}T1/(T*+a,_, T+ ---+a,T+a,
—f). Now, by Lemma 4, A{X}, ,[T1/(T*+a,_, T '+ - - - + 0T+ ay— 1)
is a local ring with the maximal ideal generated by (m, f), i.e. A{X}y /.
Since A{f}/(m, f)=A/m is perfect, it follows from Lemma 4 that
A{X}m, x is integrally closed.

It is well-known that any Noetherian complete local integral
domain has the following property:

Let R be an integral domain, K the quotient field of R, and L a
finite extention of K. If R’ is the integral closure of R in L, then R’
is a finite R-module.

Next, we shall show that A{X,, ..., X,} has this property.

Proposition 3. Let A be a Noetherian complete local integral
domain with the maximal ideal m. Let K be the quotient field of
R=A{X, ---,X,}, and L o finite extention of K. Then the integral
closure R’ of R in L is a finite R-module.

Proof. Let p be the characteristic of K. If p=0, our assertion
is trivial since R is Noetherian [4] and L is separable over K. Hence
we need only to prove this proposition in the case of p+#0. There
exists a regular local subring B of A such that A is a finite B-module.
Let 1t be the maximal ideal of B. Since the topology of A coincides
with that of A as a finite B-module by Theorem (16.8) in [3], there
exists £>0 such that m*CnAcm. Hence it follows that A{X} is a
finite B{X}-module. Since R’ is the integral closure of B{X}, we need
only to prove this proposition in the case of that A is regular. In this
case A is isomorphic to EK[[T,, ---, T,11, k=A/m by Cohen’s structure
theorem. Then we have A{X,, -, X,}=k[X,, ---, X, NIT,, ---, T,11.
Now, Proposition 3 follows from (0, 23.1.4) of [1].
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The following lemma will be used to prove the theorem.

Lemma 5. Let A be a Noetherian complete local integral domain
with the maximal tdeal m, and A’ the integral closure in the quotient
field of A. If fe A{X} is a series such that fe m{X} and f(0)ecm,
then A’'{f}NA{X}=A{f}.

Proof. In [5], it is proved that A’[[f11NA[[X]1=AI[f]]. Since
feA{X}, A{f}INA[X]]IcA{X}. Then we have A/{f}NA{X}=A"{f}
NAIXN=A{1NnAfNNAIXNI=A{f}NAILfII=A{f}.

3. Proof of the theorem. Put f= };[G\IrX . The degree of

J mod m{X} is equal to the order of G. We have A{f}C A{X}°C A{X]}.
It follows from Lemma 2 that A{X}¢ is integral over A{f} and A{X}¢
has the same quotient field of A{f}. If A is integrally closed, then
A{f} is also integrally closed by Proposition 2, and hence A{X}?=A{f}.
In the general case, if A’ is the integral closure of A, A’ satisfies
conditions of Proposition 2. Then we have A’{X}¢=A'{f}. Since f(0)
=0, it follows from Lemma 5 that A{X}¢=A{X}°NA{X}=A'{f}
NA{X}=A{f}.

As was shown above, it seems that the essential part in the proof
of the theorem is to show that A{X} is integrally closed (Proposition 2).
It is not an essential condition that A/m is perfect. For example, if
A is a complete regular local ring, the theorem is true since A{X} is a
regular ring [4], and hence it is an integrally closed ring.
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