13. On Vector Measures. I

By Sachio OHBA

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1970)

1. Introduction. In [1] Dinculeanu and Kluvanek have proved the following result.

Let S be a set, R a tribe (σ -ring) of subsets of S, X a locally convex linear space with topology defined by a family $\{\| \|_p\}_{p \in P}$ of semi-norms, and $m; R \to X$ a vector measure. Then for every $p \in P$ there exists a finite non-negative measure ν_p on R such that

(1) $\lim_{\nu_p(A)\to 0} ||m(A)||_p = 0$

(2) $\nu_p(E) \leq \sup \{ \| m(A) \|_p ; A \subset E, A \in R \}$ ([1] Theorem 1)

They also raised the following problem: whether this theorem remains valid if the tribe is replaced by a semi-tribe (δ -ring)? In this paper we shall give the negative answer for the problem. And in case R is a semi-tribe we shall show that the above theorem remains true under a weaker property than (1) and property (2). (cf. Theorem 1)

In this paper we suppose that X is a normed space in order to simplify the proof.

2. Vector measures. Definition 1. Let S be a set. A nonvoid class R of subsets of S is called a semi-tribe $(\delta$ -ring) if;

(1) $A, B \in R \Rightarrow A \cup B \in R, A - B \in R$.

(2) $A_n \in R \ (n=1,2,\cdots) \Rightarrow \bigcap_{n=1}^{\infty} A_n \in R.$

From this definition it follows that a semi-tribe R has the following properties.

(3) $A_n \in R, A \in R \text{ and } A_n \subset A(n=1,2,\cdots) \Rightarrow \bigcup_{n=1}^{\infty} A_n \in R$

(4) if we set $R_A = \{B \cap A; B \in R\}$ for any $A \in R$, then R_A is a tribe on A.

Suppose that X is a normed space and \tilde{X} its completion.

Definition 2. Let R be a clan (ring). A set function m defined on R with values in X is called a vector measure if the following conditions are satisfied

(1) $m(\emptyset) = 0$

(2) for every sequence $\{E_n\}$ of mutually disjoint sets of R such that $E = \bigcup_{n=1}^{\infty} E_n \in R$, $m(E) = \sum_{n=1}^{\infty} m(E_n)$.

For every $E \in R$, we set $\tilde{m}(E) = \sup \{ ||m(A)|| ; A \subset E, A \in R \}$. Then it is easy to see that \tilde{m} is increase, subadditive on R.

Lemma 1. If R is a semi-tribe, \tilde{m} has the following properties. (1) $0 \leq \tilde{m}(E) < +\infty$ for every $E \in R$.

(2) for every decreasing sequence $\{E_n\}$ of sets of R such that $\lim E_n = \emptyset$, we have $\lim \tilde{m}(E_n) = 0$.

These results was essentially proved by Gould ([3], Theorem 2.6 and Theorem 3.6).

Theorem 1. Let R be a semi-tribe, X a normed space and $m; R \rightarrow X$ a vector measure. Then there exists a finite non-negative measure ν on R such that

(1) for any $A \in R$ and any number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon, A) > 0$ such that $B \in R$, $B \subset A$ and $\nu(B) < \delta \Rightarrow ||m(B)|| < \varepsilon$.

(2) $\nu(E) \leq \widetilde{m}(E) = \sup \{ ||m(A)||; A \subset E, A \in R \} \text{ for every } E \in R.$

Proof. For any $A \in R$ if m_A is the restriction of m to R_A , then from Dinculeanu and Kluvanek ([1] Theorem 1) there exists a finite non-negative measure ν_A on R_A such that

(i) for every number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon, A) > 0$ such that if $B \in R$, $B \subset A$ and $\nu_A(B) < \delta$ then $||m_A(B)|| = ||m(B)|| < \varepsilon$ and

(ii) $\nu_A(B) = \sup \{ \| m_A(C) \| ; C \subset B, C \in R_A \}$

 $= \sup \{ ||m(C)||; C \subset B, C \in R \} = \tilde{m}(B)$

Now we set $\nu(E) = \sup \{\nu_A(E \cap A); A \in R\}$ for every $E \in R$. Then we can prove that ν has the following properties.

(a) $0 \leq \nu(E) \leq \tilde{m}(E)$ for every $E \in R$: this is immediate by (ii).

- (b) ν is a measure on R.
- (b₁) We easily see that $\nu(\emptyset) = 0$.

(b₂) ν is finitely additive: If $E, F \in R$ and $E \cap F = \emptyset$,

we have $\nu(E \cup F) \leq \nu(E) + \nu(F)$. Therefore we have only to prove the inverse inequality. For any $\varepsilon > 0$ there exists a $A \in R$ such that $\nu_A(E \cap A) > \nu(E) - \frac{1}{2}\varepsilon$ and $\nu_A(F \cap A) > \nu(F) - \frac{1}{2}\varepsilon$. Hence $\nu(E) + \nu(F) - \varepsilon < \nu_A(E \cap A) + \nu_A(F \cap A) = \nu_A((E \cup F) \cap A) \leq \nu(E \cup F)$. Since $\varepsilon > 0$ is arbitrary, we have $\nu(E) + \nu(F) \leq \nu(E \cup F)$. Thus ν is finitely additive.

(b₃) ν is countably additive: Let $\{E_n\}$ be a decreasing sequence of sets of R such that $\lim_{n \to \infty} E_n = \emptyset$.

By (a) we have $0 \leq \nu(E_n) \leq \tilde{m}(E_n)$ for all *n*, and by Lemma 1 (2) $\lim \tilde{m}(E_n) = 0$.

Hence

$$\lim \nu(E_n)=0.$$

Thus ν is countably additive i.e. ν is a measure. It is easy to verify the property (1). Q.E.D.

The property (1) of Theorem 1 cannot be replaced by the stronger condition $\lim_{\nu(A)\to 0} ||m(A)|| = 0$. The following example is a negative answer

No. 1]

of the problem posed by Dinculeanu and Kluvanek [1].

Counter example. Let S be an infinite set, R the semi-tribe of all finite sets in S, X the Banach space of bounded functions on S with sup norm and φ_A the characteristic function of A. Then

$$\varphi_A \in X \quad ext{and} \quad \|\varphi_A\| = 1$$

Define $m; R \to X$ by $m(A) = \varphi_A$ if $A \in R, A \neq \emptyset$, and $m(\emptyset) = 0$. Then m is a vector measure. If $\lim_{\nu(A) \to 0} ||m(A)|| = 0$ and (2) is satisfied for some non-negative measure ν on R, we have $\nu(\{s\}) > 0$ for every point $s \in S$. As we have $\nu(A) \leq 1$ for every $A \in R$, there exists a sequence $\{s_n\}$ of points of S such that $\nu(\{s_n\}) < \frac{1}{n}$ for $n = 1, 2, \dots$, so $\lim_{n \to \infty} ||m(\{s\})|| = 0$. But $||m(\{s_n\})|| = ||\varphi_{\{s_n\}}|| = 1$ for $n = 1, 2, \dots$. This contradiction shows that R has not the property $\lim_{\nu(A) \to 0} ||m(A)|| = 0$.

Remarks. (1) In Theorem 1, the semi-tribe cannot be replaced by the clan (see Dinculeanu and Kluvanek [1] example).

(2) The condition (1) of Theorem 1 is equivalent to the following. (1') $\nu(E)=0, E \in R \Rightarrow m(E)=0$

This is due to Neumann ([4] Theorem 11.2.4).

Theorem 2. Let R be a clan, φ the semi-tribe generated by R. A vector measure $m; R \rightarrow X$ can be extended to a vector measure $m; \varphi \rightarrow \tilde{X}$ if and only if there exists a finite non-negative measure φ on R such that

 $\nu(E)=0, E \in R \Rightarrow m(E)=0.$ ([1] Theorem 2, Corollary 2) Proof. The necessity is clear by Theorem 1. The sufficiency is due to Dinculeanu and Kluvanek ([1], Theorem 2, Corollary 2).

Q.E.D.

References

- N. Dinculeanu and I. Kluvanek: On vector measures. Proc. London Math. Soc., 17, 505-512 (1967).
- [2] N. Dinculeanu: Vector Measures (Pergamon Press) Berlin (1967).
- [3] G. Gould: Integration over vector-valued measures. Proc. London Math. Soc., 15, 193-225 (1965).
- [4] J. V. Neumann: Functional Operators. I. Princeton (1950).
- [5] M. Takahashi: On topological-additive-group-valued measures. Proc. Japan Acad., 42, 330-334 (1966).
- [6] —: An extension of a generalized measure. Proc. Japan Acad., 42, 710-713 (1966).
- [7] S. Ohba: On vector measures (in Japanese). Sûgaku, 21, 52-54 (1969).