38. On the Cauchy Problem for a Certain Nonlinear Hyperbolic Partial Differential Equation of the Second Order

By Masayoshi Tsutsumi
Waseda University
(Comm. by Kinjirô Kunugı, m. J. A., Feb. 12, 1970)

1. Introduction. The uniqueness theorems for generalized solutions of first order quasilinear hyperbolic equations (or systems) were proved by either Holmgren's method [1], [2], or the method of using the potential function [3]-[5].

The purpose of this note is to extend the uniqueness theorems to certain second order quasilinear hyperbolic equations with two independent variables (Section 2) and with $n(\geqslant 2)$ independent variables (Section 3). The proofs of Lemma 1 and Theorem 1 in Section 2 are based on the potential function, and Theorem 2 in Section 3 is obtained by Holmgren's method.

In this note we state the results only. Detailed proof will be published elsewhere.
2. The case of two independent variables.

In $\Omega=\{a \leq x \leq b, 0 \leq t \leq T, T>0\}$, we consider the following equation

$$
\begin{equation*}
\partial^{2} u(x, t) / \partial t^{2}=\partial A(x, t, u, \partial u / \partial x) / \partial x+B(x, t, u) \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad \partial u(x, 0) / \partial t=v_{0}(x) \tag{2}
\end{equation*}
$$

where $u_{0}(x) \in \operatorname{Lip}[a, b]$ and $v_{0}(x) \in \mathrm{L}_{\infty}[a, b]$. We assume that $A(x, t, u, p)$ is of class C^{2} with respect to all arguments and satisfies

$$
\begin{equation*}
\partial A(x, t, u, p) / \partial p>0, \quad \partial^{2} A(x, t, u, p) / \partial p^{2}>0 \tag{3}
\end{equation*}
$$

and that $B(x, t, u)$ is of class C^{1} with respect to all arguments.
The definition of the generalized solution $u(x, t)$ of the Cauchy problem (1), (2) is the following: (a) $u(x, t) \in \operatorname{Lip}(\Omega)$. (b) $u(x, t)$ satisfies the initial conditions (2) and the integral identity

$$
\begin{equation*}
\oint_{\Gamma} u_{t}(x, t) d x+A\left(x, t, u, u_{x}\right) d t-\iint_{D} B(x, t, u) d x d t=0 \tag{4}
\end{equation*}
$$

where Γ is an arbitrary piece-wise smooth closed contour, bounding a domain D and lying in Ω. (c) $u_{x}(x, t)$ possesses the semi-increasing property with respect to t (in the sence of Douglis), i.e., there is a bounded measurable function $v(x, t)$ defined in Ω such that

$$
\begin{equation*}
u_{x}(x, t)=v(x, t), \quad \text { a.e. in } \Omega \tag{5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{v\left(x, t^{\prime}\right)-v(x, t)}{t^{\prime}-t} \geqslant-K(t) \quad \text { for } 0<t<t^{\prime} \leqslant T \tag{6}
\end{equation*}
$$

where $K(t)$ is a nonnegative and non-increasing function of t on the interval $0<t \leqslant T$.

Introducing the potential function:

$$
\begin{align*}
U(x, t)= & \int_{\xi}^{x} u\left(x^{\prime}, t\right) d x^{\prime}+\int_{0}^{t}(t-s)\left[A\left(\xi, s, u(\xi, s), u_{x}(\xi, s)\right)\right. \tag{7}\\
& \left.-B^{\prime}(\xi, s)\right] d s
\end{align*}
$$

where ξ is an arbitrary but fixed number such that $\xi \in[a, b]$ and

$$
\begin{equation*}
B^{\prime}(\xi, s)=\int_{\xi_{0}(s)}^{\xi} B\left(x^{\prime}, s, u\left(x^{\prime}, s\right)\right) d x^{\prime} \tag{8}
\end{equation*}
$$

in which $\xi_{0}(s)$ is some smooth curve in Ω, we obtain a nonlinear integro-differential equation
(9) $\quad \partial^{2} U / \partial t^{2}=A\left(x, t, \partial U / \partial x, \partial^{2} U / \partial x^{2}\right)+\int_{\varepsilon_{0}(t)}^{x} B\left(x^{\prime}, t, \partial U\left(x^{\prime}, t\right) / \partial x\right) d x^{\prime}$.

Now we consider the Cauchy problem for the equation (9) with initial conditions

$$
\begin{equation*}
U(x, 0)=\int_{\xi}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}, \quad \partial U(x, 0) / \partial t=\int_{\xi}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime} \tag{10}
\end{equation*}
$$

The definition of the generalized solution $U(x, t)$ of (9), (10) is the following: (a) $U(x, t) \in C^{1}(\Omega)$ and $U_{t}, U_{x} \in \operatorname{Lip}(\Omega)$. (b) $U(x, t)$ satisfies the equation (9) almost everywhere with (10). (c) $U_{x x}$ possesses the semi-increasing property with respect to t.

Then if $u(x, t)$ is a generalized solution of (1) with (2), $U(x, t)$ defined by (7) is a generalized solution of (9) with (10). Conversely, if there is a generalized solution $U(x, t)$ of (9) with (10), the function defined by

$$
u(x, t)=\partial U(x, t) / \partial x
$$

is a generalized solution of (1) with (2).
Let M and t_{1} be constants such that

$$
\begin{align*}
M & =\max \left(A_{p}(x, t, u, p)\right)^{1 / 2} \tag{11}\\
t_{1} & =\min (T,(\beta-\alpha) / 2 M) \tag{12}
\end{align*}
$$

where maximum is taken for (x, t) in $\Omega,|u| \leqslant \max _{\Omega}\left|U_{x}(x, t)\right|$ and $|p| \leqslant \sup _{\Omega}\left|U_{x x}(x, t)\right|$, and α, β are arbitrary numbers such that $a \leq \alpha<\beta \leq b$.

We shall call a trapezoid $T_{0}^{\tau}=\left\{(x, t) ; \alpha+M t \leq x \leq \beta-M t, 0 \leq t<\tau \leq t_{1}\right\}$ a trapezoid of determinacy for the generalized solution $U(x, t)$ considered if $\xi_{0}(t)$ belongs to a rectangle:

$$
\alpha+M \tau \leq x \leq \beta-M \tau, \quad 0 \leqslant t<\tau \leqslant t_{1} .
$$

Denoting by I_{ρ} the intersection $T_{0}^{*} \cap\{t=\rho\}$, we obtain the following lemma:

Lemma. Let $U_{i}(x, t), i=1,2$, be two generalized solutions of the

Cauchy problem for the equation (9) with initial data (10) and $E(t)$ be the integral

$$
\begin{align*}
E(t)= & \int_{I_{t}}\left[\frac{1}{f(x, t)}\left(\partial U_{1}(x, t) / \partial t-\partial U_{2}(x, t) / \partial t\right)^{2}\right. \tag{13}\\
& \left.+\left(\partial U_{1}(x, t) / \partial x-\partial U_{2}(x, t) / \partial x\right)^{2}\right] d x
\end{align*}
$$

where

$$
\begin{align*}
f(x, t)= & \int_{0}^{1} A_{p}\left(x, t, \theta \partial U_{1} / \partial x+(1-\theta) \partial U_{2} / \partial x, \theta \partial^{2} U_{1} / \partial x^{2}\right. \tag{14}\\
& \left.+(1-\theta) \partial^{2} U_{2} / \partial x^{2}\right) d \theta
\end{align*}
$$

Then, in the common trapezoid of determinacy, there exist appropriate positive constants λ and μ such that the quantity

$$
e^{-\mu t}(k(t))^{-\lambda} E(t)
$$

decreases monotonically as t increases in the interval $0<t \leqslant t_{1}$, where

$$
k(t)=\exp \left\{-\int_{t}^{t_{1}} K(\rho) d \rho\right\} .
$$

The constant λ depends on $M=\max \left(A_{p}(x, t, u, p)\right)^{1 / 2}, \sup \left|\partial^{2} U_{i} / \partial x \partial t\right|$, $c_{1}=\max \left|A_{u}(x, t, u, p)\right|, c_{2}=\max \left|A_{p t}(x, t, u, p)\right|, c_{3}=\max \left|A_{u p}(x, t, u, p)\right|$, $c_{4}=\max \left|A_{p p}(x, t, u, p)\right|, \quad c_{5}=\min \left|A_{p}(x, t, u, p)\right|, \quad c_{6}=\max \left|B_{u}(x, t, u)\right|$ where maximum and minimum are taken over (x, t) in $\Omega,|u| \leqslant \max _{\Omega}$ $\left|\partial U_{i} / \partial x\right|$ and over $|p| \leqslant \sup _{\Omega}\left|\partial^{2} U_{i} / \partial x^{2}\right|, i=1,2$. The constant μ is determined from M, c_{6} and $b-a$. If $B \equiv 0$, then we may take $\mu=0$.

As an immediate consequence of the lemma, we have
Theorem 1. If $K(t)$ is summable in $(0, T)$, two generalized solutions of the equation (1), which satisfy the same initial conditions, coincide almost everywhere in a common trapezoid of determinacy.

Remark. We see easily that the similar result as the lemma is valid for the Cauchy problem for the equation of the form:

$$
\partial^{2} u(x, t) / \partial t^{2}=A\left(x, t, \partial u / \partial x_{1}, \cdots, \partial u / \partial x_{n}, \Delta u\right)
$$

with initial conditions

$$
u(x, 0)=u_{0}(x), \quad \partial u(x, 0) / \partial t=v_{0}(x)
$$

where $x=\left(x_{1}, \cdots, x_{n}\right)$ and $\Delta u=\partial^{2} u / \partial x_{1}^{2}+\cdots+\partial^{2} u / \partial x_{n}^{2}$.
3. The case of \boldsymbol{n} independent variables. Let $S=\{(x, t) ; t \geqslant 0, x$ $\left.\in R^{n}\right\}$, $S_{T}=\left\{(x, t) ; 0 \leqslant t \leqslant T, x \in R^{n}\right\}$ and $\tilde{S}_{T}=\left\{(x, t) ; 0 \leqslant t<T, x \in R^{n}\right\}$. Here T is an arbitrary positive number.

We consider the following second order quasilinear partial differential equation

$$
\begin{equation*}
\partial^{2} u(x, t) / \partial t^{2}=\sum_{i=1}^{n} \partial A_{i}(x, t, u, \nabla u) / \partial x_{i}+B(x, t, u, \nabla u) \tag{15}
\end{equation*}
$$

with initial conditions
(16) $\quad u(x, 0)=u_{0}(x), \quad \partial u(x, 0) / \partial t=v_{0}(x)$
where $x=\left(x_{1}, \cdots, x_{n}\right) \in R^{n}, \nabla u=\left(\partial u / \partial x_{1}, \cdots, \partial u / \partial x_{n}\right), u_{0}(x) \in \operatorname{Lip}\left(R^{n}\right)$,
and $v_{0}(x) \in L_{\infty}\left(R^{n}\right)$. We assume that $A_{i}(x, t, u, p)$ is of class C^{2} with respect to all arguments where $p=\left(p_{1}, \cdots, p_{n}\right)$ and $A_{i j}(x, t, u, p)$ $=\partial A_{i}(x, t, u, p) / \partial p_{j}$ satisfy the following conditions:

1) For all x, t, u and p

$$
\begin{equation*}
A_{i j}(x, t, u, p)=A_{j i}(x, t, u, p) \tag{17}
\end{equation*}
$$

2) For all x, t, u, p and all real vectors $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$

$$
\begin{equation*}
0<\kappa_{1} \sum_{i=1}^{n} \xi_{i}^{2} \leqslant \sum_{i, j=1}^{n} A_{i j}(x, t, u, p) \xi_{i} \xi_{j} \tag{18}
\end{equation*}
$$

where κ_{1} is a positive constant.
3) For all x, t, u, p and for each $k(k=1, \cdots, n)$

$$
\begin{equation*}
\sum_{i, j=1}^{n} \partial^{2} A_{i}(x, t, u, p) / \partial p_{j} \partial p_{k} \xi_{i} \xi_{j} \geqslant 0 \tag{19}
\end{equation*}
$$

We assume that $B(x, t, u, p)$ is of class C^{1} with respect to all arguments.

The definition of the generalized solution u of the Cauchy problem (15), (16) is the following: (a) $u(x, t) \in \operatorname{Lip}\left(S_{T}\right)$. (b) $u(x, t)$ satisfies the integral identity

$$
\begin{gather*}
\iint_{t \geq 0}\left[u \cdot \phi_{t t}+\sum_{i=1}^{n} A_{i}(x, t, u, \nabla u) \phi_{x_{i}}-B(x, t, u, \nabla u) \cdot \phi\right] d x d t \tag{20}\\
+\int u_{0}(x) \phi_{t}(x, 0) d x-\int v_{0}(x) \phi(x, 0) d x=0
\end{gather*}
$$

for any C^{2} test function $\phi(x, t)$ with compact support in \tilde{S}_{T}. (c) its first derivatives $u_{x_{i}}(x, t) \quad(i=1, \cdots, n)$ possess the semi-increasing property with respect to t, i.e., there exist bounded measurable functions $v_{i}(x, t)(i=1, \cdots, n)$ defined in S_{T} such that

$$
\begin{equation*}
u_{x_{i}}(x, t)=v_{i}(x, t) \quad \text { a.e. in } S_{T} \tag{21}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{v_{i}\left(x, t^{\prime}\right)-v_{i}(x, t)}{t^{\prime}-t} \geqslant-K(t) \text { for } 0<t<t^{\prime} \leqslant T \tag{22}
\end{equation*}
$$

where $K(t)$ is a nonnegative and non-increasing function of t on the interval $0<t \leqslant T$.

Theorem 2. If $K(t)$ is summable on $(0, T)$, the generalized solution of the Cauchy problem for the equation (15) with the initial conditions (16) is unique.

Outline of proof for Theorem 2. Let $u_{1}(x, t), u_{2}(x, t)$ be two generalized solutions of the equation (15) with the same initial data. Then the difference $w(x, t)=u_{1}(x, t)-u_{2}(x, t)$ satisfies

$$
\begin{align*}
& \iint_{t \geq 0}\left[w \cdot \phi_{t t}+\sum_{i, j=1}^{n} \tilde{A}_{i j}(x, t) w_{x_{j}} \phi_{x_{i}}+\sum_{i=1}^{n} \tilde{A}_{i u}(x, t) w \phi_{x_{i}}\right. \tag{23}\\
& \left.\quad-\sum_{i=1}^{n} \tilde{B}_{i}(x, t) w_{x_{i}} \phi-\tilde{B}_{u}(x, t) w \phi\right] d x d t=0
\end{align*}
$$

where

$$
\tilde{A}_{i j}(x, t)=\int_{0}^{1} A_{i j}\left(x, t, \theta u_{1}+(1-\theta) u_{2}, \theta \nabla u_{1}+(1-\theta) \nabla u_{2}\right) d \theta
$$

$$
\begin{aligned}
& \tilde{A}_{i u}(x, t)=\int_{0}^{1} \partial A_{i}\left(x, t, \theta u_{1}+(1-\theta) u_{2}, \theta \nabla u_{1}+(1-\theta) \nabla u_{2}\right) / \partial u d \theta, \\
& \tilde{B}_{i}(x, t)=\int_{0}^{1} \partial B\left(x, t, \theta u_{1}+(1-\theta) u_{2}, \theta \nabla u_{1}+(1-\theta) \nabla u_{2}\right) / \partial p_{i} d \theta, \\
& \tilde{B}_{u}(x, t)=\int_{0}^{1} \partial B\left(x, t, \theta u_{1}+(1-\theta) u_{2}, \theta \nabla u_{1}+(1-\theta) \nabla u_{2}\right) / \partial u d \theta .
\end{aligned}
$$

We shall establish that $w=0$ by showing

$$
\begin{equation*}
\iint_{t \geq 0} \Phi(x, t) w(x, t) d x d t=0 \tag{24}
\end{equation*}
$$

for any C^{2}-function Φ with compact support in \tilde{S}_{T}.
By assumptions, there exist positive constants $\kappa_{1}, \kappa_{2}, c_{1}, c_{2}, c_{3}$ and a function $L(t)$ such that

$$
\begin{aligned}
& 0<\kappa_{1} \sum_{i=1}^{n} \xi_{i}^{2} \leq \sum_{i, j=1}^{n} \tilde{A}_{i j}(x, t) \xi_{i} \xi_{j} \leq \kappa_{2} \sum_{i=1}^{n} \xi_{i}^{2}, \\
& \left|\tilde{A}_{i u}\right| \leqslant c_{1},\left|\tilde{B}_{i} w_{x_{i}}\right| \leqslant c_{2},\left|\tilde{B}_{u}\right| \leqslant c_{3}, \sum_{i, j=1}^{n} \frac{\tilde{A}_{i j}\left(x, t^{\prime}\right)-\tilde{A}_{i j}(x, t)}{t^{\prime}-t} \xi_{i} \xi_{j} \geqslant \\
& -L(t) \sum_{i=1}^{n} \xi_{i}^{2}, 0<t<t^{\prime} \leqslant T
\end{aligned}
$$

for all real vectors ξ and for any bounded domain in S_{T}. Here $L(t)$ is nonnegative and non-increasing on the interval $0<t \leqslant T$ (note that, if $K(t)$ is summable on ($0, T), L(t)$ is also summable on it). Then by a familiar argument we may construct sequences of functions $\left\{A_{i, j}^{m}(x, t)\right\}$, $\left\{A_{i u}^{m}(x, t)\right\},\left\{B_{i}^{m}(x, t)\right\},\left\{B_{u}^{m}(x, t)\right\}$ which are infinitely differentiable and converge in $L_{i o c}^{2}\left(S_{T}\right)$ as $m \rightarrow \infty$ to $\tilde{A}_{i j}(x, t), \tilde{A}_{i u}(x, t), \tilde{B}_{i}(x, t) w_{x_{i}}, \tilde{B}_{u}(x, t)$, respectively and satisfy

$$
\begin{gather*}
0<\kappa_{1} \sum_{i=1}^{n} \xi_{i}^{2} \leq \sum_{i, j=1}^{n} A_{i j}^{m}(x, t) \xi_{i} \xi_{j} \leq \kappa_{2} \sum_{i=1}^{n} \xi_{i}^{2}, \\
\left|A_{i j}^{m}(x, t)\right| \leqslant c_{1},\left|B_{i}^{m}(x, t)\right| \leqslant c_{2},\left|B_{u}^{m}(x, t)\right| \leqslant c_{3}, \tag{25}\\
\sum_{i, j=1}^{n} \partial A_{i j}^{m}(x, t) / \partial t \xi_{i j} \xi_{j} \geqslant-L(t) \sum_{i=1}^{n} \xi_{i}^{2}
\end{gather*}
$$

for all real vectors ξ and for any bounded domain in S_{T}.
We now consider the backward Cauchy problem of the equation

$$
\begin{gather*}
\partial^{2} \phi^{m} / \partial t^{2}=\sum_{i, j=1}^{n} \partial\left(A_{i j}^{m}(x, t) \partial \phi^{m} / \partial x_{i}\right) / \partial x_{j}-\sum_{i=1}^{n} A_{i u}^{m}(x, t) \partial \phi^{m} / \partial x_{i} \tag{26}\\
-\sum_{i=1}^{n} B_{i}^{m}(x, t) \phi^{m}-B_{u}^{m}(x, t) \phi^{m}=\Phi(x, t)
\end{gather*}
$$

with initial conditions

$$
\begin{equation*}
\phi^{m}(x, T)=\partial \phi^{m}(x, T) / \partial t=0 \tag{27}
\end{equation*}
$$

In virtue of the conditions (24) and the summability of $L(t)$, it is easily to show the fact that $\partial \phi^{m} / \partial x_{i}, \phi^{m}$ are uniformly bounded in $L_{\text {ioc }}^{2}\left(S_{T}\right)$, from which the validity of the relation (24), i.e., the conclusion of Theorem 2, immediately follows.

Remark. If we are concerned with the equation (15) with conditions (19) replaced by

$$
\begin{equation*}
\sum_{i, j=1}^{n} \partial^{2} A_{i}(x, t, u, p) / \partial p_{j} \partial p_{k} \xi_{i} \xi_{j} \leqslant 0 \tag{19'}
\end{equation*}
$$

we must replace the inequality (22) by

$$
\begin{equation*}
\frac{v_{i}\left(x, t^{\prime}\right)-v_{i}(x, t)}{t^{\prime}-t} \leqslant J(t) \text { for } 0<t<t^{\prime} \leqslant T, \tag{22'}
\end{equation*}
$$

where $J(t)$ is a nonpositive and non-decreasing function of t on the interval $0<t \leqslant T$.

Acknowledgement. The writer wishes to thank Professor R. Iino for suggestions and criticisms.

References

[1] O. A. Oleinik: Discontinuous solutions of nonlinear differential equations. Uspekhi Mat. Nauk (English Transl., Amer. Math. Soc. Trans., 26, 95-172 (1963)).
[2] -: On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equation encountered in mechanics. Uspekhi Mat. Nauk, 12, 169-176 (1957).
[3] B. L. Rozhdestvenskii: Discontinuous solutions of hyperbolic systems of quasilinear equations. Uspekhi Mat. Nauk, 15 (1960) (English Trans., Russian Math. Surveys, 15(6), 53-111 (1960)).
[4] A. Douglis: The continuous dependence of generalized solutions of nonlinear partial differential equations upon initial data. Comm. Pure Appl. Math., 14, 267-284 (1961).
[5] R. Iino: On the Cauchy problem for certain nonlinear hyperbolic systems with two independent variables. Waseda University Bulletin of Science and Engineering Research Laboratory, no. 30, 41-45 (1965).

