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24. Characteristic Pseudo Quasi Topological Spaces

By Yong-Woon KIM
(Comm. by Kinjir6 KUNU(]I, M. g. A., Feb. 12, 1970)

Introduction. One defines a characteristic pseudo quasi metric
spaces as the topological space generated by a pseudo quasi metric
function whose range is {0, 1}. Since every finite topological space is
a special case of the characteristic pseudo quasi spaces, many results
concerning finite topological spaces which have been known by prece-
dents ([2], [12], [13]) are considered as the corollaries of the results of
characteristic pseudo quasi metric spaces. Furthermore, every pseudo
quasi metric is considered as a transformation into the reals by
f(y)=d(x, y) for each x e X and one induces an equivalent matrix
representation for a finite topological space and the algebraic struc-
ture of the matrix representation is studied. Similarly, it is observed
that these functions induce partial, ordered relation on X.

1o This chapter is mainly concerned with necessary definitions
and theorems which will be used for the discussion of the later
chapters.

1.1. Definition. A p.q. (pseudo quasi) metric (see [6]) "d" is
said to be characteristic p.q. (or c.p.q.) metric iff whose range is {0, 1}.

One observes c.p.q, metrics act like a characteristic unction on
the minimum base for each x e X.

For each c.p.q, metrix d, there exists the conjugate c.p.q, metric
_d, which is defined as _d(x, y)=d(y, x).

Notation. ( 1 ) S(x, )- {y" d(x, y) e, e 0}
( 2 ) S_(x, e) {y" d(x, y) < e, e > 0}

1.2. Definition. Let C be the topology whose base is {(x,
and it is said to be the characteristic topology of . Similarly, is
defined and (X, (, _C) is called the c.p.q, bitopological space.

The following theorem is well known ([4]-[6], [9])
1.3. Theorem. Let the notation "A B" be A implies B,

p-perfectly normal p-completely normal
p.q. bitopology p-normal

p-completely rogular p-regular.
where "p-" denote pairwise (e.g. p-regular stands for pairwise
regular)

1.4. Theorem. Let (X, , C_) be a c.p.q, bitopological space.
UeC iff
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Proof. If U e C, then U= ) S(x, 1), where S(x, 1)- {y" d(x, y)--0}.

Therefore., for x e U and z e U, d(x, z)- 1 and _d(z, x)- 1. Consequently,
_S(z, 1) U-0 for every z e U and U is _C-closed.

Similarly, the rest of the proof is induced.
2. It is easy to see that every c.p.q, topology has the minimum

base for each x e X. In particular, every finite topological space is
a c.p.q, space.

2.1. Theorem. Let (X, C, C_) be a c.p.q, bitopological space.
=C_ iff 5 is Ro.

Proof. Assume xeUeC. Since C is R0,2eUwhere 2 is C
closure of x.

Therefore, for any y e U d(y, x)- 1 and S(y, 1) U .
Consequently, U is C-closed and apply (1.5) and the proof is

completed.
However, if R0 is replaced by normality, then a c.p.q, bitopologi-

cal space (x, C, _C) does not imply C-_C.
2.2. Example. Let X={x, x., x} and C= {{x, x}, {x., x}, {x}{x},

X, } then it is a normal space but it is not a regular space.
2.:}. Theorem. If (X, C, C_) is a c.p.q, bitopological space, then

(X, C) is connected iff (X, C) is connected.
Proof. apply (1.5).
2.4. Theorem. Let (X, C) be a c.p.q, topological space. The

following are equivalent
(a) (X, C) is pseudo metrisable.
(b) (X, C) is regular.
( c ) (X, C) is completely regular.
(d) (X, C) is O-dimensional.
(e) (X,C) isR.

) (X, C) is Ro.
Proof. See (1.4), (1.5), (1.6) and (2.1).
Fletcher [2] obtained some parts of the above results in the case

of X as a finite topological space by the use of quasi uniformity.
:}. As a special case of c.p.q, metric topology, let X be a finite

set. We study a matrix representation of (X, C) which is naturally
induced by "d".

Let X={x, x, ..., x}.
associate a column vector

Then with each finite set X, we can

and we know d(x, x)-O or 1 for each i and ].
to make the following associations.

Therefore it is natural
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(x,).-
Xn an 0

(or the representation matrix of C)
where ai d(x, x).

Let R be the i’ row and C be the 2"t column of M(). Then

Mo)= =(C, ..., C) and R is identified as S(x, 1). R is

said to be the vector representation o S(x, 1) and let B(x) be
R=(a... (o).. "an), the smallest C-open set containing x.

Similarly, we can easily obtain M(;) where M() is the matrix
representation o _C which is induced "d_", the conjugate c.p.q, metric
o "d".

With each x, we associate
(g)-- (a, 1 a(_),R, an)

for B(x), where a-- - otherwise
and let (1,..., 1)-.

Here, we need a suitable vector operation which is applicable in
the new system.

3.1. Definition. (i) RNR.=((aNa),...(an["la.n))
(, ., )

t01ifa/a=0,
where - i a+a_> 1

(ii) R [J R=((a. a), ..., (a. a)).
Then it is obvious that

(i) R R is the vector representation of the intersection of the
x-nbhd and the x-nbhd in the characteristic base.

(ii) R UR is the vector representation of the union o x-nbhd
and x-nbhd and it will be identified an element of L.

Considering the fact that any intersection of two open sets is an
open set or and the definition o , we have the ollowing"

3.2. Lemma. (I) R R--R’, where R, R’ and R’ are
vector representation on x nbhd of different c.p.q, topologies.

( II ) (R R) R"--R (R R"),
(III) R R-R R,
(IV) (RRo)=R, where Ro-(O, ..., 0).

Let m-(M()} be the set of all the matrix representations of C, where
C is a topology defined on X (X is a finite set). A matrix operation
on m is defined as follows"
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Since the intersection of two characteristic basis is a characteristic
base and

0. 0

is the matrix representation o indiscrete topology on X and M e m.
Furthermore, M0 is considered as the identity element under the
operation gl. Similarly, we can show m has the same structure with
respect to .

Therefore
:.3. Theorem. m is a commutative monid structure with

respect to "" and "U" operation.
Here we discuss a few properties of the finite topological prop-

erties with, the matrix representation.
:.4. Definition. A bitopological space (X, L, L) is p-- T1/2 iff

for every x, y e X, xCy there exist disjoint an L-nbhd of x and an

L-nbhd of x, where i= 1 or 2 and i:/: ] ([6]).
:.5. Lemma. Let (X, L, L) be a p-regular space. It is p-- T1/2

if/L, i= 1 or 2 is To topology.
Proof is omitted.

3.6. Theorem. Let (X, C) be To. If M()= and Mo)

then R R-- (1, 1, ..., 1). i] for i- 1, ..., n.
Proof. (X, C) being to imply that (X, C, _C) is p-T1/2, by (3.5) for

each x, x e X, xx these nbhds have empty intersection.

3.7. Theorem. Let (X,C) be T and M(c)= Then

R=(1, .,1,0,1...), fo i=1, ...,.
3.8. Theorem. Let (X, L) be R,. The Me .
PrOfo See (.1) and (..4).
By (8.6) and (8.8)

Corollary. If (K, C) is To and R0, then it is T. Obviously,
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the weight of (X, C) is the number of distinct row vectors of Mv
added by 1 for empty element t. Therefore

:3.10. Theorem. The weight of (X, C) does not exceed (nq-1)
(See [12]).

(3.6) and the definition immediately lead to"
:3.11. Corollary. If (X, C) is To (See p. 1966 of [13]) then the

weight is (nnu 1).
The followings are obvious from the definition of Mv

=0, where:3.12. Theorem. (X, C)(X, C) iff a]-a] or a
aT? is the element of i row and ] column of M(c), n= 1, 2.

:3.1:3. Theorem. (X, C) is connected iff R f R-- (0, ., O) im-
plies RVIR:/:(1, ...,1). For any i, ]- l, n.

4. Stong [13] defined a partial ordering on a finite set. One
generalizes the ordering in c.p.q, spaces.

4.1. Lemma. A c.p.q, metric on X induces a partial order on X.
Proof. Let "" be defined as x_>y iff d(x, y)-O. The following

is true.
( i ) x_> x (reflexive),
(ii) If x>_ y and y_> z, then x>_ z. Because by the triangular

inequality d(x, z)<_ d(x, y)-k d(y, z) the right hand side for inequality is
zero (x>_y and y>_z implies d(x, y)-=O and d(y, z)-O)

Therefore d(x, z)-O and x_> z.
Similarly, the following is true
4.2. Lemma. Let (x, >_) be a partial ordered set. "_>" induces

a c.p.q, metric.
Proof. Let define d" XX(0, 1} as

d(x, y)-O if x>_y,
d(x, y)- 1 otherwise.

We obtain the following
( i ) d(x,x)=O for all x eX and d(x,y)>_O.
(ii) d(x, y) g d(x, z) + d(z, y) for all x, y, x e X.
Because if d(x,y)-O, then the result is trivial. Let’s consider

the case d(x,y)-=l. If d(x,z)-d(z,y)-O then x<_z and z<_y, which
implies x<_y and d(x, y)-O. Therefore, at least either d(x, z) or d(z, y)
is equal to 1 and the triangular inequality is held.

4.3. Theorem. f" (X, C)-. (X, C) is continuous iff f" (X, >_)
(X’, >_’) is increasing.

Proof. Let f be a continuous function at a and
Ufc,={y; d’(f(a), y)<l or d’(f(a), y)=0}.

Since f-(U]())DS(a, 1) and y e U]() which implies f(a)>_y, if
b e f-(y), then b e S(a, 1) and a_> b.

The converse of the proof is easy.
Similarly,
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4.4. Corollary.
(X’, _>’) is decreasing.

f: (X, C_)--(X’, C’) is continuous iff f: (X, _)
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