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52. An Estimate from above for the Entropy and the
Topological Entropy of a C'.diffeomorphism

By Shunji ITo
(Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1970)

Let ¢ be a C'-diffeomorphism from an n-dimensional Riemannian
manifold on itself, 2(¢p) the topological entropy [1] of ¢ and let 4 be a
contractive constant of ¢. In this paper, we will give an estimate
from above for the topological entropy:

Mp)<nlogl/2

Using a result of L. Goodwyn [3], one can derive also an estimate

from above for the measure theoretic entropy [7]:

h(p)<nlogl/A
and this estimate is sharper than Kuchinirenko’s [6] and A. Avez’s
[21.

§1. Definitions and a property.

Let ¢ be a homeomorphism from a compact metric space X onto
itself. If « is any open cover of X, we let N(a) be the number of
members in a subcover of ¢ of minimal cardinality. As in [1], the
limit exists in the following definition :

e, @)=lim - L Jog N(VEy pla)®

Let a, be the collection of all open spheres of radius ¢>0. In
metric spaces, the topological entropy h(¢p) of ¢ can be defined as
h(go)__hm Ma;, ¢). (This is equivalent to the usual definition.)

For any t>0, let 3, be any cover of subset A of X by arbitrary
sets of diameter<<2t.

For any set A of X, define M,(A) to be the number of members in
subcover of 3, of minimal cardinality. Then as in [5], we define the
lower metrical dimension dim A of set A by

dim A =lim _log M(A)
-0 logl/t
and define the dimension dim A of set A by
dim A =1lim 222 Ml i¢ the limit
-0 logl/t
exists.

Property 1 [5]. Let X be an n-dimensional Euclidian space and

suppose a compact subset A of X has interior points.

* As in [1], we write aVvVB={UNV:Ueca, Vep} and we write a>$ to mean
that @ is a refinement of 3.
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Then
dim A=dim 4 =n.
Finally, when homeomorphism ¢ on a compact metric space has
a positive real number A(1>1>0) such that d(p(p), ¢(@)) >4-d(p, q) for
any p, ¢ € M, we call homeomorphism ¢ contractive and 2 a contractive
constant of ¢.
§2. Lemmas and theorems.
Let M be a compact n-dimensional Riemannian manifold, d: M x M
—R a metric on M induced by some smooth Riemannian metric and
let ¢ be a C'-diffeomorphism on M. In this case we can obtain
following lemma.
Lemma 1. ¢ 18 contractive and a contractive constant is given by
A=inf inf [P«
PEM vpETpM ||1)p||
where T ,M is tangent space at p e M.
Proof. To prove Lemma 1, it is sufficient to consider the case of
a connected manifold. Since ¢ is a C'-diffeomorphism and {v,]||v,||
=1,v,eT,M} is a compact subset of T,M, the smoothness of
Riemannian metric implies that
inf inf 12«¥l _inf int g0, =2>0.
peM vpeToM [V, pEM |lvpll=1
By definition, the metric d(p, q) is given by
d(p, @)=inf L(c; a, b)
where ¢: I=(a, b)—M is a C'-curve satisfying ¢(a)=p and ¢(b)=q, and

L(c; a, b)=jb |vewy||dE.  For ¢(p) and ¢(q), there exists a curve goc/,

where ¢’ is a curve joining p and ¢q. From the definition of 4,
b/
L(¢ [e] c/ ; a/, b’):J‘a’ ”go*'l)c,m”dt

bl
>2[ [veldt>2d@, 9.

In the next lemma we apply the elementary sublemma.

Sublemma. Suppose {a®(?)}, i=1,2, ..., k, are positive integer
valued functions defined on (0, 0) such that
lim M:a“’ exists for all 1.

-0 logl/t
Then
lim log (Z’f:l a?(t))
) log1/t
Lemma 2. Let M be a compact n-dimensional Riemannion
manifold.

=max (a(l)’ a(Z), cee, a(k))'
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Then
dim M =mn.

Proof. For any p ¢ M, there exists a convex chart (U,+) on M,
that is two arbitrary points in U can be joint by a geodesic segment
contained in U, where ¥(U) is also convex. Without loss of generality,
we can suppose that the diffeomorphism + is defined on U. Let o be
the usual metric on a n-dimensional Euclidean space. From the
compactness of V() and the convexity of U and y(T), we can deduced
that there exists a constant 1> >0 such that

© %d(p, D= (WD), W) > pdw, @) torallp,qe U.

Proof of this is similar to that for Lemma 1. Now for any ¢>0, let 3,
be any cover of U (by arbitrary sets) with diam B:<2t. Then ¥(f,) is
a cover of ¥(U7) with diam ¥(8,)<2t/p¢. Thus
M( U) >Mz/p(‘]f( [7)), and
lim log Mz(l-]) >lim log Mt/;«(\V([-j)) . log e/t .
=0 logl/t =0 log ¢/t log1/¢
Property 1 implies

lim Mj@_>n

= logl/t ~
On the other hand, we can get similarly,
w— log M,(O)
>lim —=2 -2 |
n= c1~o log1/t
Therefore _
dim U=n.
For all p e M, there exists such a convex chart (U,,v,). From the
compactness of M, there exist finite convex charts U,, - - -, U, satisfying
C) U .,;=M .
i=1

Using a sublemma, we can show
Tim 108 M) o (og 53k, M(T))

_ i Jog (i, M(OD) _

-0 log 1/t i=0 log 1/t 10 log 1/t
On the other hand
n=lim 108 MdU) iy, log M)

i~ logl/t = logl/t
Therefore we get dim M=mn.

Remark. Lemmas 1, 2 are also true in the case of a smooth
compact Riemannian manifold with boundary. Proof of Lemma 2 is
more complex in this case. Roughly speaking, when we consider the
metric o to be induced from a curve on R", the relation (¢) is true in
Lemma 2. Moreover by compactness, there exists a positive large
number M satisfying Mo’(yv(p), ¥(q)) = o(v(), ¥(q)), where p’ is a usual
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metric on R*. Take a sufficiently small constant x, then the relation
(¢) for a usual metric p’ is also true.

Theorem 1. Let M be an n-dimensional compact Riemannion
manifold, ¢ a C'-diffeomorphism on M.

Then the topological entropy of ¢ is finite and satisfies

Me)<nlogl/a, 1>2>0,
where A is a contractive constant of ¢. In particular, A is chosen by
A=inf inf 12x%l
PEM vpETHH ”’Up”
Proof. From Lemma 1, it follows that for any >0
a,Nv oo,V Vo™, < Bim-y3

where a;, is the collection of all open spheres of radius ¢t and -1, is
any cover of M with diam Bm-1,,<24™"'t/3. Therefore, N(a.V pa,
Ve Vorta) < Mm-1,,(M). From this, it follows that

lim —:)“—%- log N(a,V pa,V -+ - Vo™ 'a,)
<lim log Mam—lt/S(M) .log 3/2m—1t .
m-o  log 3/A™"1 m

Now, from Lemma 2,
. log Mym-1,,,(M) __ . log3/A™"'t _
3‘132 g é/zlﬁlt =n and, 71n1_1£ T_log 1/2.
Thus, h(a;, ¢)<nlogl/2 for all £>0. From the definition of h(p) it
follows that

Mp)<nlogl/A. q.e.d.

The idea of Theorem 1 above can be used to prove a more general
result.

Theorem 2. Let X be a compact metric space, and assume that
a homeomorphism ¢ has a contractive constant 1>>2>0.

Then

)< dim (X) log 1/2.

Now the following theorem was proved by L. Goodwyn.

Theorem [8]. Let X be a compact metric space, p a probability
measure on X and let ¢ be a homeomorphism on X preserving the
measure (.

Then

h ()< M),

where h,(p) is the measure theoretic entropy [7].

From this theorem and Theorem 1, the following sharper form of
the theorem of Kuchnirenko [6] and Avez [2] can be proved.

Theorem 3. Let (M, p, @) be a classical dynamical system, that
is to say, M is an n-dimensional compact Riemannian manifold, p
is a probability measure and the C'-diffeomorphism ¢ is measure
preserving.
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Then
h(p)<nlogl/a,
where 2 is o contractive constant of ¢. In particular, 2 is chosen by
A=inf inf @+l
PEM vpETPM “’l)p“

§3. Examples on a flow.

Let {¢;]| —co<t< o} be a flow, that is a one parameter group of
diffeomorphisms on M. In [4], we could consider a topological entropy
of a flow. Thus we can derive the following estimate.

Theorem 4. Let M be an n-dimensional compact Riemannion
manifold and let {¢,} be a flow on M.

Then the topological entropy of {¢,} satisfies

M) = llT]h«otK ﬁn log 1/2(t)  (¢0),
where
A®=inf inf [PVl
ped vpeTpd ||V,

Example 1. Let M be a compact connected n-dimensional
Riemann manifold. If the Gaussian curvature R is non negative, then
the geodesic flow on the unitary tangent bundle 7,M has a zero
topological entropy.

Proof. TUse Theorem 4 and observe

A1/¥YR)=1 as R>0 and 1/A()<l+t as R=0.

Example 2. A holocycle flow has a zero topological entropy.

Proof. Use Theorem 4 and observe that 1/A(¢) is bounded from
above by a polynomial P(t).

In conclusion I would like to express my thanks to Professor
G. Maruyama, Professor Yuji Ito and Mr. T. Takahashi for encourage-
ment and valuable discussions.
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