92. On Cubic Galois Extensions of $Q(\sqrt{-3})$

By Hideo WADA

Department of Mathematics, University of Tokyo (Comm. by Kunihiko Kodaira, M. J. A., May 12, 1970)

Let k be the field $\mathbb{Q}(\sqrt{-3})$ and let K be the field $k(\sqrt[3]{A})$ for some element A of k. In this paper, we shall determine in Theorem 1 a basis of integers of K and determine in Theorem 2 the genus field of K with respect to k and determine in Theorem 3 whether the class number of K is a multiple of 3 or not

1. A basis of integers.

Let O_k be the ring of integers of $k=\mathbb{Q}(\sqrt{-3})$. Any cubic galois extension K over k can be written as $k(\sqrt[3]{A})$, where $A\in O_k$, $A\neq 1$, is without cubic factors and, without loss of generality, we may assume that $A=fg^2$, f and g being integers of k having no square factors and $f\not\equiv -1$, $g\not\equiv -1\pmod{\sqrt{-3}}$. Put $A^*=f^2g$, $\theta=\sqrt[3]{A}$, $\theta^*=\theta^2/g=\sqrt[3]{A^*}$ and O_K =the ring of integers of K. By the relation $\theta^2=g\theta^*$, every element of K can be expressed in the form $\alpha+\beta\theta+\gamma\theta^*$, $(\alpha,\beta,\gamma\in k)$. Let $\omega=\alpha+\beta\theta+\gamma\theta^*$ be an element of O_K and ω' , ω'' be its conjugates over k. It can be easily veryfied that:

- (1) $\omega + \omega' + \omega'' = 3\alpha$,
- (2) $\omega \omega' + \omega' \omega'' + \omega'' \omega = 3\alpha^2 3\beta \gamma f g$,
- (3) $\omega \omega' \omega'' = \alpha^3 + \beta^3 A + \gamma^3 A^* 3\alpha \beta \gamma f g$.

As ω is an integer, 3α and

$$(3\beta)^3A\cdot(3\gamma)^3A^*=(9\beta\gamma fg)^3$$

 $(3\beta)^3A + (3\gamma)^3A^* = 27(\alpha^3 + \beta^3A + \gamma^3A^* - 3\alpha\beta\gamma fg) - (3\alpha)^3 + 3\cdot 3\alpha\cdot 9\beta\gamma fg$ are integers of k. Since A and A^* contain no cubic factors, 3β and 3γ are integers of k. Put $3\alpha = a$, $3\beta = b$ and $3\gamma = c$. Then $\omega = (a + b\theta + c\theta^*)/3$, $(a, b, c \in O_k)$. From (2) and (3), these coefficients must satisfy the congruences:

- $(4) \quad a^2 bcfg \equiv 0 \pmod{3},$
- (5) $a^3 + b^3 A + c^3 A^* 3abcfg \equiv 0 \pmod{27}$.

We shall next determine a basis of O_K as O_k -module. When $\omega_1=1$, $\omega_2=(a_2+b_2\theta)/3$ and $\omega_3=(a_3+b_3\theta+c_3\theta^*)/3$ are elements of O_K such that:

$$\min \{ |b| ; O_K \ni (a+b\theta)/3, O_k \ni a, b, b \neq 0 \} = |b_2|, \\ \min \{ |c| ; O_K \ni (a+b\theta+c\theta^*)/3, O_k \ni a, b, c, c \neq 0 \} = |c_3|,$$

then $\omega_1, \omega_2, \omega_3$ is a basis of O_K as O_k -module, since O_k is Euclidean.

 $(a+b\theta)/3$ is an element of O_K if and only if

$$a^2 \equiv 0 \pmod{3}$$
, $a^3 + b^3 A \equiv 0 \pmod{27}$.

From these congruences, a and b are multiples of $\sqrt{-3}$. Put $a=\sqrt{-3}x$, $b=\sqrt{-3}y$. Then we have $x^3+y^3A\equiv 0\pmod {3\sqrt{-3}}$. From this congruences, we may take $\omega_2=(1-\theta)/\sqrt{-3}$, when $A\equiv 1\pmod {3\sqrt{-3}}$ and $\omega_2=\theta$, when $A\not\equiv 1\pmod {3\sqrt{-3}}$.

 $\omega=(a+b\theta+c\theta^*)/3$ is an element of O_K if and only if a, b and c satisfy the congruences (4) and (5). If c is not a multiple of 3, but c is a multiple of $\sqrt{-3}$, then from (4) and (5), a and b are also multiples of $\sqrt{-3}$. Put $a=\sqrt{-3}x$, $b=\sqrt{-3}y$ and $c=\sqrt{-3}z$. Then ω is $(x+y\theta+z\theta^*)/\sqrt{-3}$ and we may assume z=1. In this case, ω is an integer if and only if

$$x^3 + y^3A + A^* - 3xyfg \equiv 0 \pmod{3\sqrt{-3}}$$
.

From this congruence ω is an integer if and only if $f \equiv g \equiv 1 \pmod{\sqrt{-3}}$ and $f \equiv g \pmod{3}$. In this case, $(1+\theta+\theta^*)/\sqrt{-3}$ is an integer.

If c is not a multiple of $\sqrt{-3}$ and $\omega = (a+b\theta+c\theta^*)/3$ is an integer, then $\sqrt{-3}\omega$ is also an integer. From above argument we have $f \equiv g \equiv 1 \pmod{\sqrt{-3}}$, $f \equiv g \pmod{3}$ and $(1+\theta+\theta^*)/\sqrt{-3}$ is an integer. So we may assume c=1. The congruences (4) and (5) are in this case as follows:

- (6) $a^2 bfg \equiv 0 \pmod{3}$,
- (7) $a^3+b^3A+A^*-3abfg\equiv 0 \pmod{27}$.

Since $A \equiv A^* \equiv 1 \pmod{\sqrt{-3}}$, we have $a \equiv b \equiv 1 \pmod{\sqrt{-3}}$. Put $a = \sqrt{-3}k + 1$, $b = \sqrt{-3}l + 1$, $f = \sqrt{-3}m + 1$ and g = f + 3s. Then

(8) $a^2 - bfg \equiv \sqrt{-3}(m-k-l) \pmod{3}$.

From (6) and (8) we may assume l=m-k. It can be easily verified that

$$a^3 + b^3 f g^2 + f^2 g - 3ab f g \equiv 9 (1 + \sqrt{-3}m)s^2 \pmod{27}$$
.

Therefore (7) can be solved if and only if $f \equiv g \pmod{3\sqrt{-3}}$.

Thus we have proved the following theorem.

Theorem 1. Let $k=\mathbb{Q}(\sqrt{-3})$, $K=k(\sqrt[3]{A})$ where A is an integer of k, cubefree and $A=fg^2$, $f\not\equiv -1\ (\text{mod }\sqrt{-3})$, $g\not\equiv -1\ (\text{mod }\sqrt{-3})$. Put $\theta=\sqrt[3]{A}$, $\theta^*=\theta^2/g$. Then a basis of integers of K as O_k -module where O_k is the ring of integers of k is given as follows:

 $\{1, \theta, \theta^*\}, \quad when \quad f \not\equiv g \pmod{3},$

 $\{1, \theta, (1+\theta+\theta^*)/\sqrt{-3}\}, \quad when \quad f \equiv g \pmod{3}, f \not\equiv g \pmod{3}\sqrt{-3},$

 $\{1, (1-\theta)/\sqrt{-3}, (f+\theta+\theta^*)/3\}, \quad when \quad f \equiv g \pmod{3\sqrt{-3}}.$

The ideal $(\sqrt{-3})$ is unramified in K if and only if

$$A \equiv 1 \pmod{3\sqrt{-3}}$$
.

2. The genus field.

Among abelian extensions over k, let L be the maximal unramified extension over K. It can be easily proved that the galois group G(L/k) is of $(3, 3, \dots, 3)$ type (cf. [3]).

As $\varphi(3\sqrt{-3})=18$ and there is the primitive sixth root of unity in O_k , any prime ideal $\mathfrak p$ of k which is not $(\sqrt{-3})$, can be expressed as (p), where p is an element of O_k and $p\equiv 1$ or 2 or 4 (mod $3\sqrt{-3}$). Therefore A can be expressed as follows:

$$A = p_1^{e_1} \cdots p_n^{e_n} \cdot q_{n+1}^{e_{n+1}} \cdots q_s^{e_s} \cdot r$$

where $e_i = 1$ or $2 (1 \leq i \leq s)$

$$p_i \equiv 1 \pmod{3\sqrt{-3}}, \quad q_i \equiv 2 \text{ or } 4 \pmod{3\sqrt{-3}}$$

$$r = \rho^{l}(\sqrt{-3})^{m}, \quad \rho = (1 + \sqrt{-3})/2, \quad l, m \in \mathbb{Z}.$$

Then we get easily the following theorem.

Theorem 2. Let L, p_i , q_i and r be as above. Then L is expressed as follows:

$$L = K(\sqrt[3]{p_1}, \cdots, \sqrt[3]{p_n}, \sqrt[3]{q_{n+1}q_{n+2}^{m_{n+2}}}, \cdots, \sqrt[3]{q_{n+1}q_s^{m_s}})$$

where $m_i=1$ or 2 such that

$$q_{n+1}q_i^{m_i} \equiv \pm 1 \pmod{3\sqrt{-3}}$$
.

Let t be the number of ramified prime ideals in K/k. Then the degree of L=K is 3^{t-1} , when n=s, and 3^{t-2} , when n< s.

It is easy to see that the class number of K is not a multiple of 3 if and only if L=K. So we have next theorem.

Theorem 3. The class number of K is not a multiple of 3 if and only if A has one of the following forms $(p_i, q_i, r \text{ are as above})$:

- 1) $A = p_1$. 2) $A = q_1q_2$, $q_1 \equiv 2$, $q_2 \equiv 4 \pmod{3\sqrt{-3}}$.
- 3) $A = q_1 q_2^2$, $q_1 \equiv q_2 \equiv 2$ or $4 \pmod{3\sqrt{-3}}$. 4) A = r. 5) $A = q_1 r$.

Remark. When A is a natural number, K contains the purely cubic field $F = \mathbb{Q}(\sqrt[3]{A})$. Prof. T. Honda determined whether the class number of F is a multiple of 3 or not (cf. [4]). He also proved that the class number of K is not a multiple of 3 if and only if the class number of F is not a multiple of 3 (cf. [4]). If we use this fact and Theorem 3, we can easily get his result.

References

- R. Dedekind: Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. Reine Angew. Math., 121, 40-123 (1900).
- [2] B. N. Delone and D. K. Faddeev: The Theory of Irrationalities of the Third Degree. Moskva (1940).
- [3] H. Hasse: Zur Geschlechtertheorie in quadratischen Zahlkörpern. J. Math. Soc. Japan, 3, 45-51 (1951).
- [4] H. Honda: Pure cubic fields whose class numbers are multiples of 3 (to appear in J. of Number Theory).

[5] J. Martinet et J. J. Payan: Sur les bases d'entiers des extensions galoisiennes et non abeliennes de degré 6 des rationnels. J. Reine Angew. Math., 229, 29-33 (1968).