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92. On Cubic Galois Extensions of Q(v/—3)

By Hideo WaDA
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., May 12, 1970)

Let k be the field Q(+/ —3) and let K be the field k(¥ A) for some
element A of k. In this paper, we shall determine in Theorem 1 a
basis of integers of K and determine in Theorem 2 the genus field of
K with respect to &k and determine in Theorem 3 whether the class
number of K is a multiple of 3 or not

1. A basis of integers.

Let O, be the ring of integers of k=Q(v —3). Any cubic galois
extension K over k can be written as k(¥ A), where A € O,, A+1, is
without cubic factors and, without loss of generality, we may assume
that A= fg¢?, f and g being integers of k having no square factors and
S#E—1, g#=—1 (mod v/ —38). Put A*=j?g, 0=VA, 0*=0*/g=¥A*
and Oxz=the ring of integers of K. By the relation 6?=g60*, every
element of K can be expressed in the form a+ 86+ 70*, (a, 8,7 € k).
Let w=a+ B0+ 70* be an element of O and w’, ®” be its conjugates
over k. It can be easily veryfied that:

(1) o+ +o"=3a,

(2) wo'+0'0"+0"0=3a*-3Lrf9,
(3) wo'o'=a’+pA+7A*—3aBrfg.
As w is an integer, 3a and

(BB)A-(3y)*A*=(987r9),

BBYA+@Byr)A*=2T(a*+ B A+ *A*—3afyf9)—(Ba)*+3-3a-9B1fg
are integers of k. Since A and A* contain no cubic factors, 38 and
3y are integers of k. Put 3a=a, 38=0 and 3y=c. Then w=(a+ bl
+¢0%)/3, (a,b,cc0,). From (2) and (3), these coefficients must
satisfy the congruences:

(4) a*—befg=0 (mod 3),
(5) a*+bA+cCA*—3abcfg=0 (mod 27).

We shall next determine a basis of Ox as O,-module. When
w,=1, w,=(a,+b,0)/3 and w,=(a;+b,0+c,0%)/3 are elements of Oy
such that:

min {|b|; Og 3 (a+b6)/3, O, 5 a,b,b+0}=b,|,
min {|¢| ; Ox 2 (a+ b0 +¢6%)/3, Or2a,b, ¢, c£0t=|cl,
then w,, w,, w, is a basis of Ox as O,-module, since O, is Euclidean.

(a+b6)/8 is an element of Oy if and only if
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a’=0 (mod 3), a*+b*A=0 (mod 27).
From these congruences, @ and b are multiples of v—3. Put
a=+—=3x, b=+/—3y. Thenwehave 2°+%*A=0 (mod 34/ —3). From
this congruences, we may take w,=(1—8)/+'—3, when A =1(mod 3+ —3)
and w,=0, when A=1 (mod 3 v/ —3).

w=(a-+b0+cf*)/3 is an element of Oy if and only if a, b and ¢
satisfy the congruences (4) and (5). If ¢ is not a multiple of 3, but ¢
is a multiple of 4/ —3, then from (4) and (5), & and b are also multi-
ples of ¥/ —3. Put a=+—3x, b=+ —3y and ¢c=+—3z. Then o is
(x+y0 +20%)/v/ —8 and we may assume z=1. In this case, w is an
integer if and only if

2+ 9y*A+A* 32y fg=0 (mod 8 v/ —3).

From this congruence w is an integer if and only if f=g=1
(mod v/ —=3) and f=g (mod3). In this case, (1+6+6*)/v/—38 is an
integer.

If ¢ is not a multiple of v —8 and w =(a+ bl + cf*)/3 is an integer,
then +/—3w is also an integer. From above argument we have
f=g=1(mod v —=3), f=¢ (mod 3) and (1+6+6%)/+/—3 is an integer.
So we may assume c¢=1. The congruences (4) and (5) are in this case
as follows:

(6) a*—bfg=0(mod 3),
(7)) a*+b*A+A*—3abfg=0 (mod 27).
Since A=A*=1 (mod +¥/—38), we have a=b=1 (mod v —3). Put
a=+—8k+1, b=+ ~-8l+1, f=v—3m+1and g=f+3s. Then
(8) a*—bfg=+v—8(m—k—1) (mod 3).
From (6) and (8) we may assume l=m—Fk. It can be easily verified
that
@+ b3 fg*+ 29 —8abfg =9 (1 ++/ —38m)s? (mod 27).
Therefore (7) can be solved if and only if f=g (mod 8 v/ —3).

Thus we have proved the following theorem.

Theorem 1. Let k=Q(/—3), K=«k(¥/A) where A is an integer
of k, cubefree and A=fg? f=—1(mod+y —3), g% —1 (mod v —3).
Put 0=%A, 0x=0%g. Then a basis of integers of K as O,-module
where Oy is the ring of integers of k is given as follows:

1,0,0%}, when f#g (modS3),
(1,0, A+60+60%/v =8}, when f=g (mod3), f£g (mod3+ —3),
1, A=W =3, (f+0+0%)/3)}, when fF=g (mod 3+ —3).
The ideal (v —3) is unramified in K if and only if
A=1(mod 8+ -3).
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2. The genus field.

Among abelian extensions over k, let L be the maximal unramified
extension over K. It can be easily proved that the galois group
G(L/k) is of (3,38, - - -, 3) type (cf. [3]).

As ¢(8 4/ —38)=18 and there is the primitive sixth root of unity in
O, any prime ideal p of k& which is not (v —3), can be expressed as
(p), where p is an element of O, and p=1 or 2 or 4 (mod 3+ —3).
Therefore A can be expressed as follows:

A=pite . pirqnste - @1
where ;=1 or 2(1<i<5s)
p;=1(mod3+/—=3), ¢;=2or 4(mod8+—3)
r=p(v—=3", p=1+v-3)/2, lLmeZ.
Then we get easily the following theorem.
Theorem 2. Let L, p;, q;, and r be as above. Then L is express-
ed as follows:
L:K(\B/E, tt z/ﬁ;y Q/anqgf;z’ tt an+lq?s)
where m;=1 or 2 such that
Qns1q™=+1(mod 8 v —3).
Let t be the number of ramified prime ideals in K/k. Then the degree
of L=K s 3'"', when n=s, and 3'"%, when n<s.

It is easy to see that the class number of K is not a multiple of 3
if‘'and only if L=K. So we have next theorem.

Theorem 3. The class number of K is not a multiple of 3 if and
only if A has one of the following forms (p;, q;, T are as above):

1) A=p,. 2) A=qq, ¢.=2,¢,=4(mod 3+ —3).
3) A=¢q¢, ¢,=¢=20r 4(mod3+v—3). 4) A=r. 5) A=q,r.

Remark. When A is a natural number, K contains the purely
cubic field F=Q(¥4). Prof. T. Honda determined whether the class
number of F' is a multiple of 3 or not (cf. [4]). He also proved that
the class number of K is not a multiple of 3 if and only if the class
number of F' is not a multiple of 3 (cf. [4]). If we use this fact and
Theorem 3, we can easily get his result.
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