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150. Absolute NSrlund Summability Factor
oI Fourier Series

By Masako IzuM and Shin-ichi IzuM
(Comm. by Kinjir.5 KUNUGI, M. . A., Sept. 12, 1970)

1o Let a be an infinite series and let (s) be the sequence of
n----0

its partial sums. Let (P)=(Po, P," ") be a sequence of positive
numbers and P=Po+P+"’+P (n=0,1,2,...), p_=P_=0. We
write

tn-pl Pn-8--P; , P_a (n-- 1, 2,... )
=0

which is called the nth NSrlund mean o the series a or the sequence
(s). If the sequence (tn) is of bounded variation, then the series a
is called to be absolutely summable (N, p) or summable IN, Pn] and we
write a e IN, p I.

Let f be an integrable unction over the interval (0,27r) and be
periodic with period 2=. We denote its Fourier series by

f(t) - ao + = (a cos nt+ b sin nt)
--0

A(t).

The sequence (m) is called the absolute NSrlund summability factor
or the IN, PI summability factor of the Fourier series of f at the point
x i , renAn(x) e IN,

We suppose always that all m are non-negative.
S. V. Kolhekar [1] has proved the
Theorem A. Let (ms) be a monotone decreasing sequence

satisfying the condition

( 1 ) , mn- lognc

and let (p) be a monotone increasing sequence such that
( 2 ) pn/Pn-O(1/n), A(P/p) O(1) as n-c.
Then, if

where (u) (u) f(x + u) + f(x u) 2f(x), then , m A(x)

We define a function re(t) continuous on the interval (1, ) such
that re(n)= mn for n= 1, 2, and re(t) is linear for every non-integral
t. Similarly p(t) is defined by the sequence (p) and we put P(t)

i p(u)du.
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If

L. Leindler [2] has proved the following
Theorem B. Let (m) and (Pn) be monotone decreasing sequences.

mPx<c and

or

mnP loglognc and (t)-O t/log- as t-O,

then mnAn(x) IN, PnI.
2. We have the following generalizations.
Theorem 1. Let (m) be a monotone decreasing sequence satis-

fying the condition (1) and let (Pn) be a monotone increasing sequence
such that

(4) P-j-P--I < A for all]>1

If the condition (3) is satisfied, then mAn(x) e ]N, Pn.
The condition (2) implies the condition (4) and then Theorem 1 is

a generalization of Theorem A.
Theorem 2. Let (m) and (p) be monotone decreasing sequences

satisfying the condition

mP; logn.
If the condition (3) is satisfied, then mA(x) e N, Pn.. We can generalize Theorem 1 in the ollowing orm.

Theorem . Let (m) be a monotone decreasing sequence and (p)
be a monotone increasing sequence satisfying the condition (4). If

I: (t) m()log 2dt<t t
and

i (t) dt i m(1/u)
t u

then mA(x) e IN, p I.
This theorem has the following corollaries.
Corollary 1. Suppose that (m) is a monotone decreasing

sequence and that (p) is a monotone increasing sequence satisfying
the condition (4). If

/((t)_<_At log as tO

for an a, 0 a 1, and
m(logn)-" or mloglogn

=2 n n=3 n

according as 0a<l or a-l, then mA(x) e IN, p].
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Corollary 2. Suppose that (m) is a monotone decreasing
sequence and that (Pn) is a monotone increasing sequence satisfying
the condition (4). If
(5) (t)t-dt< c and (m/n)< c,

then renAn(x) e N, n .
/( 1)(> 1)The first condition of (5) is satisfied when $(t)At log

as t0 or $(t)A t re(lit) as t0.
Theorem B is generalized as follows"
Theorem 4. Suppose that (m) and (Pn) are monotone decreasing

sequences. If

I: (t) dt ;: m(1/v) dv<,
t vP(1/v)

then renAn(x) IN,
As a corollary of Theorem 4, we get
Corollary . Suppose that (m) and (p) are monotone decreasing

sequences. If
(t)NAt log 1 a t0 ag mP(log)t-<

o 0 < 1 or i
(t)t-dt< ad Px <

the mA(z) N,
3. We shall consider the ease that is of bounded variation. In

this direction we know the following theorem due to
Theorem C.

[:t-]d(t)]< for an

then nA(x) e C, fl for every >.
We generalize this theorem in the ollowing form.
Theorem . Suppose that (p) and (ran) are sequences satisfying

the following conditions" (i) p as n (ii) m

mA(x)elN, pl.
We shall prove here only this theorem and the others will be

proved in another paper.
4. Proof of Theorem 5. We can suppose that Ao(x)-O. By the

definition

A()= : (t)cos t gt-- 1 : sin t
and then
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tn-- tn_-- 1 (PnPn--- Pn_Pn)mA(x),PnPn_ =, Itn__tn_l< idg(t) PnPn---Pn-Pn m sin it
=1 = PnPn_
It is sufficient to prove that the integrand is less than A m(1/n) on

(0, ). Putting s [1/t],
PP---Pn-Pn msin]t = + --U+V.

n=l = PnPn_ ] n=l n=s+l

Since P_/P 1 asn for each ],

n=l =1 n=j

=t m P- gA m.
Now

n=s+l

=W+X
where

PnPn_--Pn_Pn m sinjt
= PnP_ ] n=s+l j=s+l

=1 -1 j=l Ps
and

x<= + E + E
n=s+ j=s+ n=2(s+ l) j=s+ n=2(s+ l)

=X’+ Y+Z.
X’__<A m similarly as above. Writing [n/2]-N,

[n/2"l +

pngn_j__pn_j9 md cos (]-l/2)t-cos (]+ l/2)tY-- =+) =+ PnP- /- 2 sin t / 2
PnPn-N--Pn-NPn m cos (N+l/2)t

=2(+, PP_ N 2 sin t/2

=+ ] PPn- 2 sin t/2
PP----Pn--P m+ cos(s+l/2)t+ PP_ s+ 1 2 sin t / 2

Y+ Y2 + Y,
where

1 1) e t = 1)

EA_ + <A=_ + (m P-I J())<Am=
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and similarly Y<=A m. Finally we shall estimate Z using the
following lemma due to E. Hille and J. D. Tamarkin [4]:

Lemma. If the sequence q is positive and non-increasing, then

I, q sin]tl<=A Q(1/t) and A q/t

for any n and t e (0, ), where Q(r)= q for r1.
j<r

Then we get

Z-- 1 m--A Pn-j sin it- P m___ p_ sin it
/1) Pn-1 fl=N/l PnPn_ j=N+I

<_A P m + A mn p <A m.
+1) n Pn-I - n=2(s+l) n Pn

Thus we have proved the theorem.
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