## 192. On Some Theorems of Berberian and Sheth

By Takayuki Furuta*) and Ritsuo Nakamoto**)<br>(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1970)

1. Introduction. In this paper an operator $T$ means a bounded linear operator acting on a complex Hilbert space $H$.

Following Halmos [4] we define the numerical range $W(T)$ as follows:

$$
W(T)=\{(T x, x) ;\|x\|=1\}
$$

The basic facts concerning $W(T)$ are that it is convex and that its closure $\overline{W(T)}$ contains the spectrum $\sigma(T)$ of $T$.

Definition 1 ([4]). An operator $T$ is said to be convexoid if

$$
\overline{W(T)}=\cos \sigma(T)
$$

where the bar denotes the closure and co $\sigma(T)$ means the convex hull of the spectrum $\sigma(T)$ of $T$.

It is known that hyponormal operator is convexoid.
S. K. Berberian introduced the notion "cramped" of the unitary operator as follows:

Definition 2 ([1]). An unitary operator is said to be cramped if its spectrum is contained in some semicircle of the unit circle

$$
\left\{e^{i \theta} ; \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\} .
$$

Definition 3. A closed sector $\mathcal{S}$ is said to be cramped sector if

$$
\mathcal{S}=\left\{r e^{i \theta} ; r \geqq 0, \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\}
$$

and $\theta_{2}-\theta_{1}$ is named to be sector angle of cramped sector $\mathcal{S}$.
Two lines are said to be the sector lines respectively which start the origin through the end point of the semicircle of the cramped sector, that is to say, a cramped sector consists of two sector lines and a semicircle. [cf., $L_{1}, L_{2}$ of Fig.]

Definition 4 ([2] [7]). An operator $T$ is said to satisfy the condition $G_{1}$ if

$$
\left\|(T-\lambda)^{-1}\right\| \leqq[\operatorname{dist}(\lambda, \sigma(T))]^{-1}
$$

for all $\lambda \notin \sigma(T)$.
Definition 5 ([9]). A point $\alpha$ of $\sigma(T)$ is a semibare point if it lies on the circumference of some closed disk which contains no other point of $\sigma(T)$.

The set of all semibare points of $\sigma(T)$ will be denoted by $S B(\sigma(T))$. We decompose $T=U R$, polar decomposition of $T$. In this paper we

[^0]shall discuss the correlation between $\overline{W(T)}$ and $\overline{W(U)}$ in view of the standpoint of the two sectors in which $\overline{W(T)}$ and $\overline{W(U)}$ lie under the appropriate conditions and we shall give the graphic representation having their geometric signification by Figure.

Our central result is as follows. If $T$ is invertible convexoid operator which has the polar decomposition $T=U R$ with the cramped unitary operator $U$, then (i) $0 \notin \overline{W(T)}$, (ii) $\overline{W(T)}$ and $\overline{W(U)}$ have the same cramped sector, that is to say, they have the same sector angle and have the approximate point spectrums of $T$ and $U$ respectively on the same common sector lines. Moreover we shall give some theorems of hyponormal operator and operator which satisfies the condition $G_{1}$.

At the end of the introduction we should like to express here our thanks to Professor M. Nakamura for his kind suggestion.
2. Sheth proved the following theorem in [6]

Theorem A. Let $T$ be hyponormal and suppose that $S^{-1} T S=T^{*}$ where $0 \notin \overline{W(S)}$. Then $T$ is selfadjoint.
Here we shall show that a modification of the hypothesis of Theorem A insures the normality of $T$ by the simple calculation.

Theorem 1. If $T$ is hyponormal and unitarily equivalent to its adjoint, then $T$ is normal.

Proof. It is sufficient to show that $\|T x\|=\left\|T^{*} x\right\|$ for any vector $x$. Suppose that $T^{*}=U^{*} T U$ where $U$ is unitary. Then we have

$$
T=T^{* *}=\left(U^{*} T U\right)^{*}=U^{*} T^{*} U
$$

so that
$\left\|T^{*} x\right\| \leqq\|T x\|=\left\|U^{*} T^{*} U x\right\|=\left\|T^{*} U x\right\| \leqq\|T U x\|=\left\|U^{*} T U x\right\|=\left\|T^{*} x\right\|$ for any vector $x$, that is to say, $\|T x\|=\left\|T^{*} x\right\|$, or $T$ is normal.
3. Sheth stated in [5] the following

Theorem 2. If $T$ satisfies the condition $G_{1}$, then the residual spectrum $R_{\sigma}(T)$ contains no semibare point of the spectrum $\sigma(T)$ :

$$
S B(\sigma(T)) \cap R_{\sigma}(T)=\emptyset
$$

In this section, we shall here give a proof of Theorem 2 basing on the following theorem due to Berberian [2; Lemma 2]:

Lemma 1. If $T$ satisfies the condition $G_{1}$ and $\lambda$ is a semibare point of $\sigma(T)$, then

$$
\operatorname{ker}(T-\lambda)=\operatorname{ker}\left(T^{*}-\lambda^{*}\right),
$$

where ker $A$ is the null space of $A$.
Proof of Theorem 2. Let $\lambda \in S B(\sigma(T)) \cap R_{\sigma}(T)$, then $\lambda^{*}$ belongs to the point spectrum $P_{\sigma}\left(T^{*}\right)$ of $T^{*}$. However by Lemma $1, \lambda \in P_{\sigma}(T)$, this contradiction proves Theorem 2.
4. In [1] Berberian showed the following result:

Theorem B. If T is invertible normal operator which has the polar decomposition $T=U R$ with the cramped unitary operator $U$,
then $0 \notin W(T)$.
He left a question for a general invertible operator. In [3] Durszt answered this question negatively by an example. However, Sheth [5] proved that the question of Berberian is still affirmative for a class of invertible hyponormal operators. In the following theorem, we shall extend the theorem of Sheth for a more wider class of convexoid operators because hyponormal operator is convexoid.

Theorem 3. If $T=U R$ is an invertible convexoid operator such that $U$ is cramped, then $0 \notin \overline{W(T)}$.

To prove the theorem, we need the following well known theorem of Williams [8].

Lemma 2. If $0 \notin \overline{W(A)}$, then $\sigma\left(A^{-1} B\right) \subset \overline{W(B)} / \overline{W(A)}$ for any operator $B$.

Proof of Theorem 3. It is clear that $U^{-1}$ is a cramped unitary operator, i.e. $0 \notin \overline{W\left(U^{*}\right)}$. Hence we have by Lemma 2

$$
\sigma(T)=\sigma\left(\left(U^{-1}\right)^{-1} R\right) \subset \overline{W(R)} / \overline{W\left(U^{*}\right)}
$$

Since $T$ is convexoid, we have

$$
\begin{equation*}
\operatorname{conv} \sigma(T)=\overline{W(T)} \subset \operatorname{conv}\left[\overline{W(R)} / \overline{W\left(U^{*}\right)}\right] \tag{1}
\end{equation*}
$$

Hence it is sufficient to prove the theorem that one has (2) $0 \notin \operatorname{conv}\left[\overline{W(R)} / \overline{W\left(U^{*}\right)}\right]$

Suppose the contrary. Then there are a positive number $\varepsilon(0<\varepsilon<1)$, positive number $x, y \in \overline{W(R)}$ (because $R$ is strictly positive) and complex $a, b \in \overline{W\left(U^{*}\right)}$ such that

$$
\varepsilon \frac{x}{a}+(1-\varepsilon) \frac{y}{b}=0
$$

Therefore we have

$$
\begin{equation*}
a=-\frac{\varepsilon}{1-\varepsilon} \cdot \frac{x}{y} b \tag{3}
\end{equation*}
$$

Since $x, y, \varepsilon$, and $1-\varepsilon$ are positive, and since the closed numerical range of an operator is convex, (3) implies $0 \in \overline{W\left(U^{*}\right)}$ which is a contradiction. Hence (2) is proved.

Theorem 4 ([1] [8]). If $0 \notin \overline{W(T)}$, then $U$ the unitary part of $T$ is cramped, that is to say precisely, $\overline{W(U)}$ lies in the cramped sector which is enclosed by the unit circle and the two sector lines of the sector of $\overline{W(T)}$.

Proof. Let $T=U R$ and

$$
\begin{equation*}
\mathcal{S}(\overline{W(T)})=\left\{r e^{i \theta} ; r>0, \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\} \tag{4}
\end{equation*}
$$

where $\overline{\mathcal{S}}(\overline{W(T)})$ denotes the cramped sector of $\overline{W(T)}$. Since $\overline{W(T)}$ contains the spectrum $\sigma(T)$ of $T$ and (4) yields that $T$ is invertible and $U$ is unitary. By Lemma 2 and (4), $U$ is cramped as follows

$$
\sigma(U)=\sigma\left(T R^{-1}\right) \subset \overline{W(T)} / \overline{W(R)} \subset\left\{e^{i \theta} ; \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\}
$$

since $U$ is convex,

$$
\operatorname{co} \sigma(U)=W(\bar{U}) \subset\left\{r e^{i \theta}, 0<r \leqq 1 ; \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\}
$$

hence proof is complete.
Here we can precisely sharpen Theorem 3 by using the notion of sector lines, and we represent the figure having the geometric signification in which show the correlation between $\overline{W(T)}$ and $\overline{W(U)}$ under the hypothesis of Theorem 3.

Theorem 5. If $T=U R$ is an invertible convexoid operator such that $U$ is cramped, then
(i) $0 \notin \overline{W(T)}$
(ii) $\overline{W(T)}$ and $\overline{W(U)}$ have the same cramped sector, that is to say precisely, they have the same sector angle and have the approximate point spectrums of $T$ and $U$ respectively on the same common sector lines. [Fig.]
(iii) $T_{1}, T_{2}$ in Figure are the approximate point spectrums of $T$ and the bare points of $\overline{W(T)}$ respectively.

Proof. We cite (1) in the proof of Theorem 3

$$
\begin{equation*}
\operatorname{conv} \sigma(T)=\overline{W(T)} \subset \operatorname{conv}\left[W(R) / \overline{W\left(U^{*}\right)}\right] \tag{5}
\end{equation*}
$$

Let

$$
\sigma(U)=\left\{e^{i \theta}, \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\}
$$

then

$$
\overline{W\left(U^{*}\right)}=\operatorname{co} \sigma\left(U^{*}\right)=\operatorname{co}\left\{e^{-i \theta} ; e^{i \theta} \in \sigma(U)\right\}
$$

strict positivity of $R$ yields $0 \notin \overline{W(R)}$ and by (5) we have

$$
\begin{align*}
\overline{W(T)}=\operatorname{conv} \sigma(T) & \subset \operatorname{conv}\left[\frac{\overline{W(R)}}{\operatorname{conv}\left[e^{-i \theta} ; e^{i \theta} \in \sigma(U)\right]}\right]  \tag{6}\\
& \subset\left\{r e^{i \theta} ; r>0, \theta_{1} \leqq \theta \leqq \theta_{2}, \theta_{2}-\theta_{1}<\pi\right\} .
\end{align*}
$$

Hence (6) implies (i) which is already proved in Theorem 3 and by Theorem 4 and (6), we have (ii), and (iii) follows from the relation $\overline{W(T)}=\operatorname{co} \sigma(T)$. $\overline{W(U)}$ lies in the sector $O S_{1} S_{2}$ - the triangular $O S_{1} S_{2}$ in Figure and $S_{1}, S_{2}$ are the approximate point spectrums of $U$ and the bare points of $\overline{W(U)}$ respectively.

Theorem 6. If $T=U R$ is convexoid, then the following conditions are equivalent
(i) $T$ is invertible and $U$ is cramped
(ii) $0 \notin \overline{W(T)}$

Proof. (ii) $\rightarrow$ (i) is clear by Theorem 4 and the reverse relation is proved by Theorem 5.

Theorem 6 implies the following theorem of Berberian
Corollary 1 ([1]). If $N$ is normal operator, then $0 \notin \overline{W(N)}$ if and only if $N$ is invertible and $N\left(N^{*} N\right)^{-1 / 2}$ is cramped.


## References

[1] S. K. Berberian: The numerical range of a normal operator. Duke Math. J., 31, 479-483 (1964).
[2] -: An extension of Weyl's theorem to a class of not necessarily normal operators. Mich. Math. J., 16, 273-279 (1969).
[ 3 ] E. Durszt: Remark on a paper of S. K. Berberian. Duke Math. J., 35, 795-796 (1966).
[4] P. R. Halmos: Hilbert Space Problem Book. Van Nostrand, Princeton (1967).
[5] I. H. Sheth: Some results on hyponormal operator. Rev. Roum. Math. Pures et Appl., 15, 395-398 (1970).
[6] -: On hyponormal operators. Proc. Amer. Math. Soc., 17, 998-1001 (1966).
[7] J. G. Stampfli: Hyponormal operators and spectral density. Trans. Amer. Math. Soc., 117, 469-476 (1965).
[8] J. P. Williams: Spectra of products and numerical range. J. Math. Anal. Appl., 17, 214-220 (1967).
[9] T. Yoshino: On the spectrum of a hyponormal operator. Tohoku Math. J., 17, 305-309 (1965).


[^0]:    *) Faculty of Engineering, Ibaraki University, Hitachi.
    **) Tennoji Senior High School, Osaka.

