230. Characterization of Separable Polynomials over a Commutative Ring

By Takasi NAGAHARA
Department of Mathematics, Okayama University, Okayama
(Comm. by Kenjiro Shoda, M. J. A., Dec. 12, 1970)

Throughout this paper B will mean a commutative ring with an identity element, and all ring extensions of B will be assumed commutative with identity element coinciding with the identity element of B. Moreover, X will be an indeterminate, and by B[X] denote the ring of polynomials in X with coefficients in B where bX=Xb ($b \in B$). In [4], G. J. Janusz introduced the notion of separable polynomials over a commutative ring which is as follows: A polynomial $f(X) \in B[X]$ is called separable if it is a monic polynomial and if B[X]/(f(X)) is a separable B-algebra.¹⁾ In [4, Theorem 2.2], it has been shown that under the assumption B has no proper idempotents, for a polynomial $f(X) \in B[X], f(X)$ is separable if and only if there is a strongly separable B-algebra²⁾ A with no proper idempotents which contains elements a_1, a_2, \dots, a_n such that $f(X) = (X - a_1)(X - a_2) \dots (X - a_n)$ and for $i \neq j$, $a_i - a_j$ is inversible in A. In [3], B. L. Elkins proved that if a polynomial $f(X) \in B[X]$ is separable then f'(X+(f(X))) is an inversible element of B[X]/(f(X)), where f'(X) is the derivative of f(X). Recently, in [5], the present author proved that for a polynomial $f(X) \in B[X]$, if there is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B then f(X) is separable. The main purpose of this paper is to prove the following theorem.

Theorem 1. Let $f(X) \in B[X]$. Then the following conditions are equivalent.

- (a) f(X) is separable.
- (b) f(X) is monic and f'(X+(f(X))) is an inversible element of B[X]/(f(X)).
- (c) There is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X a_1) \dots (X a_n)$ and $\prod_{i \neq j} (a_i a_j)$ is inversible in B.

¹⁾ A commutative *B*-algebra *S* is called separable if it is a projective $(S \otimes_B S)$ -module (cf. [1, p. 369]).

²⁾ A B-algebra S is called strongly separable if it is finitely generated. projective, and separable over B.

The theorem follows from the results of [3, Proposition 1.8], [5, Theorem], and the following theorem.

Theorem 2. Let $f(X) \in B[X]$. If f(X) is monic and f'(X+(f(X))) is an inversible element of B[X]/(f(X)) then there is a Galois extension³⁾ A of B with a Galois group \mathcal{G} which contains elements x_1, \dots, x_n such that

- (1) $f(X) = (X x_1) \cdots (X x_n)$ and $\prod_{i \neq j} (x_i x_j)$ is inversible in B;
- (2) $A = B[x_1, \dots, x_n]$ and is a free B-module of rank n!;
- (3) for every permutation σ on letters $1, \dots, n$, A has an automorphism σ^* mapping $g(x_1, \dots, x_n)$ onto $g(x_{\sigma(1)}, \dots, x_{\sigma(n)})$;
 - (4) \mathcal{G} is a group of order n! which consists of the σ^* ;
- (5) if A' is a ring extension of B which contains elements a_1 , \dots , a_n such that $A' = B[a_1, \dots, a_n]$ and $f(X) = (X a_1) \dots (X a_n)$ then A is B-algebra homomorphic to A' under the map $g(x_1, \dots, x_n) \rightarrow g(a_1, \dots, a_n)$.

Proof. In case deg $f(X) \leq 1$, the theorem is trivial. Hence let deg f(X) > 1. Let X_1 be an indeterminate, and set $x_1 = X_1 + (f(X_1))$ $f(X) = B[X_1]/(f(X_1))$. Then $f(X) = (X - x_1)f_2(X)$ where $f_2(X) \in B[x_1][X]$. Clearly $f_2(X)$ is a monic polynomial. If deg $f_2(X) > 1$ then there is a ring extension $B[x_1][x_2]$ of $B[x_1]$ such that $B[x_1][x_2] \cong B[x_1][X]/(f_2(X))$ $(x_2 \leftrightarrow X + (f_2(X)))$ and $f_2(X) = (X - x_2) f_3(X)$ where $f_3(X) \in B[x_1, x_2][X]$. Continuing this way, there is a ring extension A of B which contains elements x_1, \dots, x_{n-1}, x_n such that $A = B[x_1, \dots, x_{n-1}] = B[x_1, \dots, x_{n-1}, x_n]$, $f(X) = (X - x_1) f_2(X) = \cdots = (X - x_1) \cdots (X - x_m) f_{m+1}(X) = (X - x_1) \cdots$ $(X-x_n)$, and $B[x_1, \dots, x_m][x_{m+1}] \cong B[x_1, \dots, x_m][X]/(f_{m+1}(X))$ $(x_{m+1} \leftrightarrow X)$ $+(f_{m+1}(X))$) where $0 \le m < n$, and $f_1(X) = f(X)$. Clearly A is a free B-module of rank n!. Now, let A' be a ring extension of B which contains elements a_1, \dots, a_n such that $A' = B[a_1, \dots, a_n]$ and f(X) $=(X-a_1)\cdots(X-a_n)$. Set $A_m=B[x_1,\cdots,x_m],\ A_m'=B[a_1,\cdots,a_m],\ and$ $A_0 = A'_0 = B$. For a number m < n, assume that A_m is homomorphic to A'_m under the map $\varphi: g(x_1, \dots, x_m) \rightarrow g(a_1, \dots, a_m)$. Then $A_m[X]$ is homomorphic to $A'_m[X]$ under the map $g(X) = \sum_i g_i(x_1, \dots, x_m)X^i$ $\rightarrow g^{\varphi}(X) = \sum_{i} g_{i}(a_{1}, \dots, a_{m})X^{i}$. Since $f(X) = (X - x_{1}) \cdots (X - x_{m})f_{m+1}(X)$, it follows that $(X - a_1) \cdots (X - a_m) f_{m+1}^{\varphi}(X) = f^{\varphi}(X) = f(X) = (X - a_1)$ $\cdots (X-a_m)\{(X-a_{m+1})\cdots (X-a_n)\}\ (\in A'[X]), \text{ so that } f^{\varphi}_{m+1}(X)=(X-a_{m+1})$ $\cdots (X-a_n)$. Then $f_{m+1}^{\varphi}(a_{m+1})=0$. Hence we have homomorphisms $A_{m+1} \rightarrow A_m[X]/(f_{m+1}(X)) \rightarrow A'_m[X]/(f_{m+1}^{\varphi}(X)) \rightarrow A'_m[a_{m+1}] = A'_{m+1}$ which are defined by maps $g(x_1, \dots, x_m, x_{m+1}) = h(x_{m+1}) \rightarrow h(X) + (f_{m+1}(X)) \rightarrow h^{\varphi}(X)$ $+(f_{m+1}^{\varphi}(X)) \rightarrow h^{\varphi}(a_{m+1}) = g(a_1, \cdots, a_m, a_{m+1}).$ From this argument, it follows that $A = A_{n-1}$ is B-algebra homomorphic to $A' = A'_{n-1}$ under the map $g(x_1, \dots, x_n) \rightarrow g(a_1, \dots, a_n)$. Furthermore, this implies that for every permutation σ on letters 1, ..., n, A has an automorphism σ^*

³⁾ See [2, Definition 1.4 (p. 20)].

mapping $g(x_1, \dots, x_n)$ onto $g(x_{\sigma(1)}, \dots, x_{\sigma(n)})$. Let \mathcal{G} be the group consisting of the σ^* . Since $f(X) = (X - x_1) f_2(X)$, we have $f'(X) = f_2(X)$ $+(X-x_1)f'(X)$, and $f'(x_1)=f_2(x_1)=(x_1-x_2)\cdots(x_1-x_n)$ which is inversible in A by our assumption. Hence for every $j \neq 1$, $x_1 - x_j$ is inversible in A. If n>2 then for every $i\neq j$ there exists an element σ^* in \mathcal{G} such that $\sigma^*(x_1) = x_i$ and $\sigma^*(x_j) = x_j$; hence $\sigma^*(x_1 - x_j) = x_i - x_j$ and is inversible in A. Now, let B' be the fixring of \mathcal{G} in A. For a non-zero n-m < n, assume that $B' \subset A_{n-m}$ ($\subset A = A_{n-1}$). Then for $b' \in B'$, we may write $b' = \sum_{s=0}^{m} c_s(x_{n-m})^s$ where $c_0, \dots, c_m \in A_{n-m-1}$. If $n-m \leq t \leq n$ then there exists an element σ^* in \mathcal{G} such that $\sigma^*(x_{n-m}) = x_t$ and $\sigma^*(x_i) = x_i$ for all i < n-m. Hence we have $\sum_{s=1}^m c_s(x_t)^s + c_0 - b' = 0$ $(n-m \le t \le n)$. The determinant of the matrix $||(x_t)^s|| (0 \le s \le m)$, $n-m \le t \le n$) is $\pm \prod_{n-m \le t < u \le n} (x_t - x_u)$ which is an inversible element of A; hence the matrix $||(x_t)^s||$ is inversible in the ring of (m+1)-square matrices with elements in A. Then we see that $c_0 - b' = 0$, that is, $c_0 = b'$. Thus we obtain $B' \subset A_{n-m-1}$. From this argument, it follows that $B'=A_0=B$. Therefore, by [5, Lemma], A is a Galois extension of B with a Galois group \mathcal{G} , and $\prod_{i\neq j} (x_i - x_j)$ is an inversible element of *B*. This completes the proof.

The following corollary is a direct consequence of Theorem 1, Theorem 2 and its proof.

Corollary 1. Let f(X) be a monic polynomial in B[X]. Then there is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$. In this case, f(X) is separable if and only if $\prod_{i \neq j} (a_i - a_j)$ is inversible in B.

The following corollary contains the result of [3, Corollary 2.4]. Corollary 2. Let $X^n - b \in B[X]$ and n > 1. Then, $X^n - b$ is separable if and only if $n \cdot 1$ and b are inversible elements of B.

Proof. We set $B[x]=B[X]/(X^n-b)$ where $x=X+(X^n-b)$. By Theorem 1, X^n-b is separable if and only if nx^{n-1} is inversible in B[x]. Noting $x^n=b$, nx^{n-1} is inversible in B[x] if and only if $n\cdot 1$ and b are inversible in B[x]. Since B[x] is a free B-module of finite rank, $n\cdot 1$ and b are inversible in B[x] if and only if these are inversible in B.

The following corollary contains the result of [5, Corollary 4].

Corollary 3. Let B be an algebra over a prime field GF(p) $(p \neq 0)$. Let $f(X) = X^{pm} + b_{m-1}X^{p(m-1)} + \cdots + b_1X^p + bX^n + c \in B[X]$ where $m \geq 1$ and p > n. Then

- (1) if n=0 then f(X) is not separable.
- (2) In case n=1, f(X) is separable if and only if b is inversible in B.
- (3) In case n>1, f(X) is separable if and only if b and c are inversible in B.

Proof. (1) and (2) are direct consequences of Theorem 1. Let n>1 and set B[x]=B[X]/(f(X)) where x=X+(f(X)). By Theorem 1, f(X) is separable if and only if $f'(x)=nbx^{n-1}$ is inversible in B[x], which is equivalent to that b and x are inversible in B[x]. Let x be inversible in B[x]. Then we may write $x^{-1}=c_{pm-1}x^{pm-1}+\cdots+c_1x+c_0$. From f(x)=0, we have $0=c_{pm-1}f(x)-(xx^{-1}-1)=(-c_{pm-2})\cdot x^{pm-1}+\cdots+(-c_0)x+c_{pm-1}c+1$. Since $\{x^{pm-1},\cdots,x,1\}$ is a free B-basis of B[x], it follows that $c_{pm-1}c+1=0$, and so, c is inversible in B[x]. Conversely, if c is inversible in B[x] then, from f(x)=0, x is inversible in B[x]. Hence f(X) is separable if and only if b and c are inversible in B[x] which is equivalent to that b and c are inversible in b.

Remark. As another characterization of the separable polynomials over B, we have the following information which contains the result of [4, Theorem 2.2].

For a monic polynomial f(X) in B[X], the following conditions are equivalent.

- (a) f(X) is separable.
- (b) There is a Galois extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X a_1) \dots (X a_n)$ and $\prod_{i \neq j} (a_i a_j)$ is inversible in B.
- (c) For each maximal ideal M of B, f(X) is separable when viewed as a polynomial over the local ring B_M .
- (d) For each maximal ideal M of B, the polynomial obtained from f(X) by reducing the coefficients modulo M has no repeated roots in an algebraic closure of B/M.
- (e) Let t denote the trace map of the free B-module B[X]/(f(X)) and let x denote the coset of X modulo (f(X)). Then the determinant of the matrix $||t(x^ix^j)||$ $(0 \le i, j < \deg f(X))$ is an inversible element of B.

The equivalence of (a) and (b) is a direct consequence of Theorem 1 and Theorem 2. The others will be proved later in a paper: On separable polynomials over a commutative ring II, Math. J. of Okayama Univ., 15 (to appear).

References

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring. Trans. Amer. Math. Soc., 97, 367-409 (1960).
- [2] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc., No. 52, 15-33 (1965).
- [3] B. L. Elkins: Characterization of separable ideals. Pacific J. Math., 34,

45-49 (1970).

- [4] G. J. Janusz: Separable algebras over commutative rings. Trans. Amer. Math. Soc., 122, 461-479 (1966).
- [5] T. Nagahara: On separable polynomials over a commutative ring. Math.
 J. Okayama Univ., 14 (to appear).