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19. The Imp!icational Fragment o R,mingle

By Saburo TAMURA
Department ot Mathematics, Yamaguchi University

(Comm. by Kinjir5 KUNUGI, M. ;r. )., Jan. 12, 1971)

The relevant logic R was first defined in Belnap [1] though the
implicational ragment o R which we refer to as RI in this note goes
back to Church’s weak implication [2]. Kripke [3] constructed
"Sequenzen-kalktil" equivalent to RI. Anderson and Belnap [4] and
the author [5] gave systems of the natural deduction equivalent to RI.
By adding a mingle axiom a(cra) to R, we get a system R-mingle
RM (defined by Meyer and Dunn [6]). Here the mingle axiom has the
effect of Gentzen type "mingle" rule introduced by Ohnishi and
Matsumoto [7].

In this note we shall give a system of the natural deduction
equivalent to RMI, that is, the implicational fragment of RM. And
then we shall show that the cut elimination theorem holds in Sequenzen-
kalktil equivalent to RMI. Finally we shall give the decision procedure
or RMI.

(A) The calculus RMI.
(Aa) Axioms.

Let er, , be arbitrary formulae.
(Aal) ((a ) ) .
(Aa2) ( ) (( ) (er y)).
(Aa3) (())().
(Aa4) a((ar)).
(Aa5) (a).
(Ab) Provability.
(Abl)-(Ab5) Each of the axioms, (Aal)-(Aa5), is provable in RMI.
(Ab6) If a and a fl are provable in RMI, then fl is provable in RMI.

This rule is called modus ponens (MP).
We shall abbreviate the statement " is provable (in RMI)" to

"(RMI)a".
(Ac) Derived rules and theorems.

Let A($) denote the formula (,.. (c )...), where
means the ormula $. Let B() denote fl(... (fl)...), where
B0() means $.
(Ael) -q.

(Ae2) If -afl and fl,, then -q,.
(Ae3) If -a and -y((a)), then -y8.
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(Ac4)
(Ac5)
(Ac6)
(Ac7)
(AcS)
(Ac9)

(Ba)

If -as, then An(a)
If -aD and -A(a), then -A(/9).

(fl
A(q fl) if and only i An(fl).
An(B()) if and only if B(An()).

(B) The calculus NRMI.
Inference rules.

Let ,/9 be arbitrary ormulae.

(Bal) This rule is called a mingle.

(Ba2) /

(Ba3)

(Bb)

(Bbl)

In this rule, which is called an -I, assumption
formulae must actually occure above the formula

This rule is called an -E.

Dependence and provability.
In the rule (Bal), the lower formula depends on assumptions
of the upper formulae .
in the rule (Ba2), depends on assumptions, except , on

(Bb2)
which/ depends.

(Bb3) In the rule (Ba3), /9 depends on assumptions of and ft.
(Bb4) The assumption formula depends on itself.

The formula which depends on no assumption is called
(Bb5)

provable in NRMI.
We shall abbreviate the statement " is provable (in NRMI)" to

"(NRMI)o".
(C) The calculus LRMI.

(Ca) Inference rules.
Let ,/,, be arbitrary formulae, /",2 be arbitrary (possibly

empty) finite series of formulae separated by commas.
(Cal) -.
(Ca2)

, c, F] This rule is called a contraction (c-).

(Ca3)

(Ca4)

(Ca5)

(Ca6)

This rule is called an interchange (i-).

This rule is called a mingle (m).

This rule is called a cut about (y).

This rule is called an -introduction in the
antecedent ().
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(Ca7)
, Ffl This rule is called an -introduction in the suc-
F cedent (-. ).

(Cb) Provability.
(Cbl) Any sequent of the form (Ca1) is provable in LRMI.
(Cb2)-(CbT) If every upper sequent in each of the rules, (Ca2)-(Ca7),

is provable in LRMI, then the lower sequent in the rule is
provable in LRMI. We shall abbreviate the statement "Fa
is provable (in LRMI)" to "(LRMI)Fa".
(D) The equivalence of RMI, NRMI and LRMI.

(Da) If RMIa, then NRMIa.
(Aal) NRMI((aa)) fl.

This is transformed into"

1

2.

(Aa2)-(Aa4)
These are easily proved along the line of Gentzen [8] (see [5]).

(Aa5) NRMIa(aa).
This is transformed into"

(MP):
This is easily proved by -E in NRMI.

(Db) If NRMIa, then LRMIa.
(Bal): If LRMIXa and LRMIFa, then LRMIX,

This is easily proved by a mingle in LRMI.
(Ba2)-(Ba3)
These are easily proved along the line of Gentzen [8] (see [5]).

(Dc) If LRMIa, ...,aa, then RMIA(a), where A(a) is

defined as a (... (aa). .).
(Ca1) RMIaa.

This is evident by (Acl).
(Ca2): If RMIA(a(a)), then RMIA(a).
We can prove this by using (Aa3) and (Ac5).

(Ca3): If RMIA(fl(aB())), then RMIA(a(flB())).
We can prove this by using (ACT) and (Ac5).

(Ca4): If RMIB() and RMIAn(), then RMIA(B()).
This is transformed into"
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(AaS)
3(8) A(3)

CATS)

(AoS)

A(8) B()
(heS)

Bm(An())
CAog)

A,(B())
(CaS)" If RMI-B(T) and RMIA(T D3), then RMIAn(B,()).

This is transformed into"

A() (h8)

A() B(T)
(>

B(A())
(At9)

An(B())
(Ca6): If RMI B(a) and RMI A(),

A,(B((a))).
This is transformed into’

then RMI

(At6)

( fl) B(fl) B(fl) B(A,(8))
(At2)

B(A((r/) ))
(Ac9)

A(B((q/) ))
(CAT)" If RMI-A(), then RMI-A().

(E) The cut.elimination theorem in LRMI.
(Ea) Theorem.

If LRMI-F, then F- is provable without cuts in LRMI.
Proof. The proof is treated along the line of Gentzen [8]. We

shall here consider a rule called a usion (cf. [7]), which is expressed
by the ollowing orm"

where nn’>_0 and 27(27’) show finite series of formulae that include
n(n’) ormulae of the orm y.

We can easily prove that every usion may be transormed into a
cut by using several interchanges and contractions. Conversely every
cut may be regarded as a special fusion. Then we have only to prove
the following"

Lemma, Any proof.figure with a fusion as its lowest rule and no
other fusion over it can be transformed into a proof-figure with the
same endsequent in which no fusion occures.

Proof, The definitions o the degree and the rank of a usion
being the same as in Gentzen [8], the proof can be carried out by the
double induction on the degree and the rank (see [5]).
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(F) Decision procedure for RMI.
We can prove the rule called anti-contraction

in LRMI as follows"

Thus we can prove that LRMI has a decision procedure in the
same way as Gentzen did in [8]. Therefore RMI has a decision
procedure.
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