11. On the Sum $\sum_{n \leq x} \frac{\tilde{n}}{n^{2}}$

By Saburô Uchiyama
Department of Mathematics, Shinshû University, Matsumoto
(Comm. by Kinjirô Kunugr, м. J. A., Jan. 12, 1971)

The purpose of this note is to present an asymptotic formula for the sum described in the title, where we denote by \tilde{n}, for every positive integer n, the maximal square-free divisor of n. We shall prove that

$$
\begin{equation*}
\sum_{n \leqq x} \frac{\tilde{n}}{n^{2}}=A \log x+B+O\left(\frac{\log 2 x}{\sqrt{x}}\right) \quad(x>1), \tag{1}
\end{equation*}
$$

where A and B are constants given by

$$
A=\prod_{p}\left(1-\frac{1}{p(p+1)}\right)
$$

(the product being taken over all primes p) and

$$
B=\frac{\pi^{2}}{6} c_{3}-\frac{6}{\pi^{2}} A \sum_{m=1}^{\infty} \frac{\log m}{m^{2}}
$$

with the constant c_{3} determined by (7), (5) and (3).
We note that the asymptotic formula (1) will immediately give a solution to a problem posed by D. Suryanarayana.*)

1. In this paragraph, t denotes an arbitrary real number >1 and k a fixed square-free integer >0. As usual, we denote by $\varphi(k)$ the Euler totient function of k, by $\sigma(k)$ the sum of all positive divisors of k, and by $v(k)$ the number of distinct prime divisors of k. Also, O constants are all absolute.

It is well known that

$$
\sum_{m \leqq t} \frac{1}{m}=\log t+C+O\left(\frac{1}{t}\right),
$$

where C is the Euler constant. Using this and the well-known property of the Möbius function $\mu(n)$, namely, $\sum_{d \mid n} \mu(d)=1$ for $n=1$ and $=0$ for $n>1$, we find easily

$$
\begin{equation*}
\sum_{\substack{m \leq t \\(m, k)=1}} \frac{1}{m}=\frac{\varphi(k)}{k} \log t+c_{1}(k)+O\left(\frac{2^{v(k)}}{t}\right) \tag{2}
\end{equation*}
$$

with

$$
c_{1}(k)=C \frac{\varphi(k)}{k}-\sum_{d \mid k} \frac{\mu(d) \log d}{d}=O(\log \log 3 k) .
$$

Next, it will follow at once from (2) that

[^0](4)
$$
\sum_{\substack{m \leq t \\(m, k)=1}} \frac{\mu^{2}(m)}{m}=\frac{6}{\pi^{2}} \frac{k}{\sigma(k)} \log t+c_{2}(k)+O\left(\frac{2^{v(k)}+\log t}{\sqrt{t}}\right),
$$
where
\[

$$
\begin{align*}
c_{2}(k) & =c_{1}(k) \prod_{p \nmid k}\left(1-\frac{1}{p^{2}}\right)-2 \frac{\varphi(k)}{k} \sum_{\substack{m=1 \\
(m, k)=1}}^{\infty} \frac{\mu(m) \log m}{m^{2}} \tag{5}\\
& =O(\log \log 3 k)
\end{align*}
$$
\]

Finally, (4) can be used to obtain

$$
\begin{equation*}
\sum_{m \leq t} \frac{\mu^{2}(m) \varphi(m)}{m^{2}}=\frac{6}{\pi^{2}} A \log t+c_{3}+O\left(\frac{\log 2 t}{\sqrt{t}}\right) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{3}=\sum_{m=1}^{\infty} \frac{\mu(m) c_{2}(m)}{m^{2}}-\frac{6}{\pi^{2}} \sum_{m=1}^{\infty} \frac{\mu(m) \log m}{m \sigma(m)}, \tag{7}
\end{equation*}
$$

on noticing that

$$
\begin{aligned}
\sum_{m \leq t} \frac{\mu^{2}(m) \varphi(m)}{m^{2}} & =\sum_{m \leq t} \frac{\mu^{2}(m)}{m} \sum_{d \mid m} \frac{\mu(d)}{d} \\
& =\sum_{d \leq t} \frac{\mu(d)}{d^{2}} \sum_{\substack{m \leq x / d \\
(m, d)=1}} \frac{\mu^{2}(m)}{m}
\end{aligned}
$$

2. We are now able to prove (1). Since

$$
\tilde{n}=\sum_{d \backslash \tilde{n}} \varphi(d)=\sum_{d \backslash n} \mu^{2}(d) \varphi(d)
$$

we have

$$
\begin{aligned}
\sum_{n \leq x} \frac{\tilde{n}}{n^{2}} & =\sum_{n \leq x} \frac{1}{n^{2}} \sum_{d \backslash n} \mu^{2}(d) \varphi(d) \\
& =\sum_{d \leq x} \frac{\mu^{2}(d) \varphi(d)}{d^{2}} \sum_{m \leqq x / d} \frac{1}{m^{2}} \\
& =\sum_{d \leqq x} \frac{\mu^{2}(d) \varphi(d)}{d^{2}}\left(\frac{\pi^{2}}{6}-\sum_{m>x / d} \frac{1}{m^{2}}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\sum_{d \leq x} & \frac{\mu^{2}(d) \varphi(d)}{d^{2}} \sum_{m>x / d} \frac{1}{m^{2}}=\sum_{m=1}^{\infty} \frac{1}{m^{2}} \sum_{x / m<d \leq x} \frac{\mu^{2}(d) \varphi(d)}{d^{2}} \\
& =\sum_{m=1}^{\infty} \frac{1}{m^{2}}\left(\frac{6}{\pi^{2}} A \log m+O\left(\frac{\log 2 x}{\sqrt{x / m}}\right)\right) \\
& =\frac{6}{\pi^{2}} A \sum_{m=1}^{\infty} \frac{\log m}{m^{2}}+O\left(\frac{\log 2 x}{\sqrt{x}}\right)
\end{aligned}
$$

by (6). Hence, using (6) again, we find that

$$
\sum_{n \leq x} \frac{\tilde{n}}{n^{2}}=\frac{\pi^{2}}{6}\left(\frac{6}{\pi^{2}} A \log x+c_{3}\right)-\frac{6}{\pi^{2}} A \sum_{m=1}^{\infty} \frac{\log m}{m^{2}}+O\left(\frac{\log 2 x}{\sqrt{x}}\right),
$$

which is identical with (1).
This completes the proof of (1).
3. A concise presentation for the constant B in (1) can be found in the following way. We define the function $F(s)(s=\sigma+i t)$ by

$$
F(s)=\prod_{p}\left(1-\frac{p-1}{p^{s+1}\left(p^{s+2}-1\right)}\right),
$$

which is analytic for $\sigma>-1 / 2$. Then $A=F(0)$ and

$$
\sum_{n=1}^{\infty} \frac{\tilde{n}}{n^{2}} \frac{1}{n^{s}}=F(s) \zeta(s+1) \quad(\sigma>0)
$$

whence follows that

$$
B=C F(0)+F^{\prime}(0) .
$$

Proof is by an elementary Abelian theorem for Dirichlet series.

[^0]: * Cf. Bull. Amer. Math. Soc., 76, 976-977 (1970): Problem 17 (2).

