8. A Note for Knots and Flows on 3-manifolds

By Gikō IKEGAMI^{*)} and Dale ROLFSEN^{**)}

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1971)

H. Seifert shows in [1] (Satz 11) that for any torus knot k in the 3-sphere S^3 there is a flow on S^3 with k as an orbit, and conversely, that if a homotopy 3-sphere Σ^3 admits a flow on it so that all orbits are closed then $\Sigma^3 = S^3$ and each orbit is a torus knot.

Here, we consider the following question: For any knot k in S^3 does there exist a non-singular flow on S^3 having k as an orbit, allowing for the flow having non-closed orbits? In this paper, we give an affirmative answer to this question.

Manifolds and maps, etc in this paper are assumed to be smooth $(C^{\infty}$ -) ones. A flow on a manifold M is a 1-parameter group of transformations $\phi: R \times M \to M$ (R, the real numbers). $x \in M$ is said to be a singular point if $\phi(t, x) = x$ for all $t \in R$. ϕ is said to be non-singular if there is no singular point. An orbit of ϕ passing x is a subset $\{\phi(t, x) | t \in R\}$. If there is $t \neq 0$ such that $\phi(t, x) = x$, the orbit is said to be closed.

Let f be a map of S^1 into a space M and $p: R \to S^1$ be the usual universal covering defined by $t \mapsto e^{2\pi t i}$, then we shall denote $f \circ p = \tilde{f}$.

Theorem. Let M be an orientable closed 3-manifold and $f: S^1 \rightarrow M$ be an embedding. Then, there exist a flow $\phi: R \times M \rightarrow M$ and $x \in M$ such that $\phi(t, x) = \tilde{f}(t)$ for all $t \in R$.

Proof. Denote the tangent bundle of M by T(M). Since, by [2] (Satz 21), M is parallelizable, we may assume $T(M) = M \times R^3$. Consider the $(R^3 - \{0\})$ -bundle T(M), $\xi : M \times (R^3 - \{0\}) \rightarrow M$ over M associated to tangent bundle. We define a map $g : f(S^1) \rightarrow T(M)$ as follows: for $x \in f(S^1)$, $g(x) = d\bar{f}/dt(t)$ where t is any number such that $\bar{f}(t) = x$. g is well-defined. Since f is an embedding, g is a cross-section of ξ over $f(S^1)$. We will extend g to a cross-section of ξ over M.

We may take a tubular neighborhood U of $f(S^1)$ coordinated as follows;

$$U = \{(x, r, \theta) \mid x \in f(S^{i}), \quad 0 \leq r \leq 1, \quad 0 \leq \theta < 2\pi\}$$

with

 $(x, 0, \theta) = (x, 0, 0)$ for all x and θ .

Since $\pi_1(R^3 - \{0\}) \cong \pi_1(S^2) = 0$, we have a homotopy F of $q \circ g$ as follows, where q is the projection into the second factor $M \times (R^3 - \{0\}) \rightarrow R^3 - \{0\}$:

^{*)} Kōbe University.

^{**)} The University of British Columbia.

$$F: f(S^{1}) \times [0, 1] \rightarrow R^{3} - \{0\},$$

$$F(x, 0) = q \circ g(x)$$

$$F(x, 1) = *, \text{ a fixed point of } R^{3} - \{0\}$$

$$a \mod C: M \rightarrow R^{3} - \{0\} \text{ as follows}$$

Next, we define a map $G: M \rightarrow R^3 - \{0\}$, as follows.

$$G(x, r, \theta) = \begin{cases} q \circ g(x) & \text{if } 0 \leq r < \frac{1}{2} \\ F(x, 2r - 1) & \text{if } \frac{1}{2} \leq r \leq 1 \\ G(y) = * & \text{if } y \notin U. \end{cases}$$

G is continuous. By an approximation keeping fixed on $f(S^1)$, we may make *G* a smooth map \tilde{G} . If we put $(y, \tilde{G}(y)) = \tilde{g}(y), \tilde{g}: M \to M \times (R^3 - \{0\})$ is a cross-section of ξ , and also, it is an extension of *g*.

We may assume that \tilde{g} is a non-zero vector field on M extending g. The flow, obtained by integrating \tilde{g} , is the desired one. This proves the Theorem.

Let *l* be an embedding $\{S_1^i \cup \cdots \cup S_n^i\} \rightarrow M$, where S_i^i is a circle and $S_1^i \cup \cdots \cup S_n^i$ is the disjoint union, then we call *l* a *link* in *M* and each $l(S_i^i)$ a component of the link.

Corollary. For any link l of an orientable closed 3-manifold M, there exists a non-singular flow ϕ of M such that each component of l coincides with a certain orbit of ϕ .

The proof is similar to the one of the Theorem.

Remark. There is a well-known Seifert's Conjecture which states that every non-singular flow on S^3 has a closed orbit. The Theorem states that if we solve the Seifert's Conjecture we must take it into consideration that any knot may come out as the closed orbit.

References

- H. Seifert: Topologie dreidimensionaler gefaserter Räume. Acta Math., 60, 147-238 (1933).
- [2] E. Stiefel: Richtungsfelder und Fernparallelismus in n-dimensionaler Mannigffaltigkeiten. Comm. Math. Helv., 8, 305-353 (1936).