No. 1] Proc. Japan Acad., 47 (1971) 15

5. A Remark on the Meet Decomposition of Ideals
in Noncommutative Rings™

By Hisao IzuMI
Department of Mathematics, Ube Technical College
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Introduction. In his paper [4] N. Radu has called that a com-
mutative ring R is in the class © if every ideal of R is represented as
an intersection of primary ideals of R, and has shown that if R is in
the class ©, then CB+A=C+ A holds for ideals 4, B and C of R such
that C< N (A+B,), where {B,|ac Iz} is the set of all ideals which

a€lp
have the same nilradical with that of B.

The aim of this note is to generalize the above fact to noncom-
mutative rings. Throughout this note, R is a noncommutative ring.
The existence of unity is not assumed. The term ideals mean two-
sided ideals, and () means the principal ideal generated by an element
2. An ideal Q of R is called a (right) M-primary [n-primary] ideal if
ABCQ and AZQ, for ideals A and B, imply that B is contained in
the McCoy’s [nilpotent] radical of Q. The right residual of an ideal
A by an ideal B is denoted by A:B, that is, A:B={rec R|xBCA}.
A ring R will be called that it is in the class © with respect to the
McCoy’s [nilpotent] radical if every ideal of R is represented as an
intersection of M-primary [#-primary] ideals of R.

§1. Throughout this note, A will denote the McCoy’s radical of
an ideal A of R, that is, A is the intersection of all minimal prime
ideals containing A. For an ideal B, I; will mean the set of the indices
of the ideals B, with B,=B.

Lemma 1. The following conditions are equivalent:

(1) R is in the class D with respect to the McCoy’s [nilpotent]
radical.

(2) Ewvery strongly meet irreducible ideal is M-primary [n-
primary].

Proof. This is immediate from the fact that every ideal is repre-
sented as an intersection of strongly meet irreducible ideals.

Theorem 1. The following conditions are equivalent :

1) R isin the class © with respect to the McCoy’s radical.

(2) If A, B and C are ideals such that C< (" (A+B,) then CB+ A

a€IB
=C+A.
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B A= N A+B)N(A:B) for any ideals A and B of R.
a€IpB

4 A=NMA+BN(U A:B)) for any tdeals A and B of R.
a€lp a€clp

Proof. By using (2) in Lemma 1, we can prove the theorem by
the following implications: 1)=2)=@)=@)=>Q).

(1)=(?): Evidently we have CB+ACC+A. Conversely, we shall
show that if any M-primary ideal @ contains CB+ A, then @ contains
C+A. Now suppose that QD CB+ A, then we have QODCB and QDA.
Moreover if Q 2B, then QDC. If QDB, then there exists a, < I, such
that Q©B,,. For, set BNQ=B,, then B, =BNQ=B. Hence we have
that C€ Y(A+B)ZA+B, Q. Therefore in both cases we have

a€lB

Q2C+A.
2)=>(3): Ifthereexisttwoideals A and BsuchthatAg (M (A+B,)

a€Ip

N(A: B), then we can find an element ¢ in (M (4+B,)N(4: B) but not

a€lpB

in A. Then z is in M (A+B,). Hence we have (x)+A=(x)B+A.

a€lIpB

On the other hand, we obtain (x)BC A for x ¢ A: B. Hence we have
(@) +A=A. This implies that x ¢ A, which is a contradiction.
8)=>@): For every B,c{B,|laclz}, we have A= (A +B,)

a€lp

N(A:B,). Hence we have A= LJ (N@A@+B)NA:B)=(N(A+B)
BEIB a€IB a€IB
N (ﬂgB(A : B))).

4)=@1): If there exists a strongly meet irreducible ideal @ which
is not M-primary, then we have two ideals A and B such that ABCQ,
AZQ and BZQ. Hence we have Q: B2Q. Now we shall prove that
no B,e{B,|ac Iy} is contained in Q. If there exists B, such that
B.CQ, then B,cQ. Since B,=B, we have BCQ. This implies
BCQ, which is a contradiction. Therefore we obtain Q+B,2Q for
every acl,. Hence we have Q& Q Q+B)N(Q: BT Q (Q@+B)

a€lp a€Ip

NCY (@Q: BY).

. aeéBZ. We let A be the nilpotent radical of an ideal A of R, that is,
A={x e R|(x)*CQ for some positive integer k}.

Theorem 2. The following conditions are equivalent:

(1) R isin the class D with respect to the nilpotent radical.

@) If A, N and C are tdeals such that CC ﬁ (A+N") and N 1is
o finitely generated ideal, then CN+A=C4A. "

@ If A, (b) and C are ideals such that CC ﬁ A+ )™, then
Cb)+A=C+A. "

4) A= ﬁ(A+N")n(A:N) for any ideal A and any finitely

n=1

generated ideal N.



No. 1] Meet Decomposition of Ideals 17

B) A= ﬁ A+GB)NA: (D)) for any ideal A and any element b.
n=1

Proof. By using Lemma 1, we can prove the theorem by the
following implications: (1)=@2)=(3)=(5)=(1) and 2)=>A)=>(5).

1)=>(@): Evidently we have CN4+ACC+A. Conversely, we
shall show that if any n-primary ideal @ contains CN 4- A4, then Q con-
tains C+A. Now suppose that QOCN + A, then we have QOCN and
QDA. Moreover if Q;Z_ﬁN , then Q©C. If N , then there exists a

positive integer k& such that N*C@Q. Hence we have CC (?jl (A+ N7

CA+N*CQ. Therefore in both cases we have QDOC+ A.

2)=>(@3) and (4)=>(5): These are immediate.

(3)=(5) and (2)=(4): These are similar to the proof of Theorem 1.

(5)=>@1): If there exists a strongly meet irreducible ideal @ which
is not n-primary, then we can find two elements # and v such that
W®)CQ,ue Q and ve Q. Hence we have QS Q: (v) and QS Q+ (V)"
for every positive integer »n, a contradiction.

§3. Now we shall investigate the previous conditions in the case
that the McCoy’s radical of every ideal coincides with the nilpotent
radical.

Lemma 2. Foranideal A of R, A=4 if and only if A is a semi-
prime ideal.

Proof. If A=A and A is not sem1-pr1me, there ex1sts, by 4.12
Theorem in [1], an element b such that be A and (b)ZCA Hence we
have be A= A a contradiction. Conversely, if A is sem1—pr1me and
be A then there exists a positive integer % such that (b)"gA Hence
we have be A by 4.12 Theorem in [1].

Proposition 1. For every ideal A of R, A=A if and only if A=A.

Proof. “If part” is immediate. As to “only if part”, since A is
semi-prime by Lemma 2, A is an intersection of prime ideals. On the
other hand, AcA= N {P;|P;: aprime ideal containing A}. Therefore

we obtain easily A=A.

Remark. For instance [3], if (a)(b) is ﬁnltely generated for any
elements ¢ and b of R, we obtain easily A= A. Hence, as is well
known, in commutative rings or in rings with the maximum condition
for ideals, we have A=A.

In the following, f~or an ideal B, J; will mean the set of the indices
of the ideals B, with B,=B.

Lemma 3. If N is a finitely generated ideal, then (N (A+N,)
a€JN
= QI(A-{-N”).

Proof. It is immediate that N*=N for any positive integer x.
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Hence we have M (A+N,)C (0'01 (A+N®). Conversely, from N, =N
n=1

- a€J N
we have N,DON. Since N is finitely generated, N*®“C N, for some

positive integer k(). Hence we obtain Q (A+N,)D ﬁl (A+N™).
I3 N n=

Theorem 3. If A=A for every ideal A of R, then the following
conditions are equivalent:

(1) R isin the class © with respect to the McCoy’s (nilpotent)
radical.

(2) (@) in Theorem 1.

(3) (3)in Theorem 1.

(4) (4) in Theorem 1.

(5) (2) in Theorem 2.

(6) (8)in Theorem 2.

(7) (@) in Theorem 2.

(8) () in Theorem 2.

(9) A= NA+NYN( ) (A:NY) for any ideal A and any
n=1 n=1
finitely generated ideal N.

(10) A= ﬁl(A+(b)")ﬂ(C)1(A:(b)") for any ideal A and any
element b.

Proof. By Theorems 1 and 2, it is immediate that conditions
1), ---,(8) are equivalent. Now we shall prove the theorem by the
following implications: (4)=(9)=10)=(8).

@»=>(9): By (4 we have A= ) (A+N“m(aeL1JN(A:N“)): N

a€ly a€d N

cA+N)N(UY (A:N)). By Lemma 3 we have AQFW(A—&N")
n=1

a€JN
N(CJ(A:N")DA. Hence we obtain A= () (A+NN(LJ(A:N).
n=1 n=1 n=1
(9=(10) and (10)=(8): These are immediate.
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