35. Surgery and Singularities in Codimension Two

By Yukio MATSUMOTO University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Feb. 12, 1971)

1. Statement of results. Throughout this paper, W^{m+2} denotes a compact connected 1-connected $PL \ m+2$ -manifold which is a Poincaré complex of formal dimension m. A closed PL submanifold L^m of W^{m+2} with codimension 2 is called a homotopy spine if the inclusion map $i: L^m \to W^{m+2}$ is a homotopy equivalence. In this paper, we shall formulate an obstruction theory to finding *locally flat* homotopy spines of W^{m+2} . The problem has been solved in odd dimensional case [1]. Here we shall consider the case where m is even: $m=2n\geq 6$. An additional condition (H) on W^{2n+2} is also assumed, which is a generalization of simplicity condition for knots [3].

There exist an S¹-fibration $\xi \xrightarrow{p} W$ and a map $\phi : \partial W^{(n)} \rightarrow \xi$, where $\partial W^{(n)}$ is the n-skeleton of some triangulation of ∂W , such that (i)

(H) ϕ is n-connected and (ii) the diagram $\partial W^{(n)} \xrightarrow{\phi} \xi$ is homotopically $\mathcal{W}^{(p)}$

commutative.

Note that $\pi_1(\partial W) \cong \pi_1(\xi)$ is a cyclic group. Denote this group in a multiplicative way by $J_q = \{t^m \mid m \in \mathbb{Z}\}/(t^q), q = 0, 1, 2, \cdots$. In § 3, a covariant functor $P_{2n}(*)$ from the category {cyclic groups, onto homomorphisms} to the category {abelian groups, onto homomorphisms} is algebraically introduced. Our results are the following:

Theorem 1.1. W^{2n+2} admits a locally flat homotopy spine if and only if a well defined obstruction element $\eta(W) \in P_{2n}(\pi_1 \partial W)$ is equal to zero.

The groups $P_{2n}(J_q)$ have some interesting properties.

Theorem 1.2. (i) $P_{2n}(J_0) \cong C_{2n-1}$ (Levine's knot cobordism group of (2n-1, 2n+1)-knots [3]), where J_0 is an infinite cyclic group. (ii) $P_{2n}(1) \cong P_{2n}$ (Kervaire-Milnor's surgery obstruction group [2]), where 1 stands for a trivial group. (iii) $P_{2n+4}(J_q) = P_{2n}(J_q)$.

A submanifold L^{2n} is said to be 1-*flat* if it is locally flat except at a finite set of points. The obstruction $\eta(W)$ can be described in terms of singularities of 1-flat homotopy spines. We have proved in [1] that W^{2n+2} admits a 1-flat homotopy spine L^{2n} . Define the *singularity* at $p \in L$ by a (2n-1, 2n+1)-knot $\sigma_p(L) = (Lk(p, L), Lk(p, W))$. The total singularity of L^{2n} in W is the summation $\sigma(L) = \sum_{p \in L} \sigma_p(L)$ in Levine's knot cobordism group. If L^{2n} is 1-flat, this is in fact a finite sum. Let $j_q: C_{2n-1} \rightarrow P_{2n}(J_q)$ be the epimorphism induced by the projection $J_0 \rightarrow J_q$ (cf. Theorem (1.2), (i)).

Theorem 1.3. Let L^{2n} be a 1-flat homotopy spine. If $\pi_1(\partial W) \cong \pi_1(W-L)$ ($\cong J_q$), then $\eta(W) = j_q(\sigma(L)) = \sum_{p \in L} j_q \sigma_p(L) \in P_{2n}(\pi_1 \partial W)$. In particular, $j_q(\sigma(L))$ does not depend on the choice of L^{2n} .

The author expresses his warmest thanks to Prof. M. Kato for many useful discussions and encouragement. The uniqueness of the total singularity in the case $\pi_1(\partial W) \cong J_0$ is essentially due to him.

Detailed proof will appear elsewhere.

2. Intersectional property of $\pi_{n+1}(E, \partial N)$. Let L^{2n} be a locally flat closed submanifold of W^{2n+2} which represents a generator of $H_{2n}(W^{2n+2}; \mathbb{Z}) \cong \mathbb{Z}$. Let N be a regular neighbourhood of L, E the exterior of N, i.e., $E = \overline{W-N}$. The frontier $\partial N = N \cap E$ is the total space of an S^1 -bundle $\widetilde{\omega} : \partial N \to L$. L^{2n} is said to be exterior k-connected if $\pi_i(E, \partial N) = 0$ for $i \leq k$. It is proved in [1] that any locally flat closed submanifold M^{2n} of W^{2n+2} is L-equivalent to L^{2n} which is exterior nconnected. Thus we may suppose that L^{2n} is already exterior n-connected. If $n \geq 3$, then $\pi_1(\partial N) \cong \pi_1(E) \cong \pi_1(\partial W)$.

Let $f, g: (D^{n+1}, S^n) \to (E^{2n+2}, \partial N)$ be pathed generic immersions such that the restrictions $f | S^n, g | S^n$ are embeddings. Moreover suppose that the compositions $\widetilde{\omega} \circ (f | S^n)$, $\widetilde{\omega} \circ (g | S^n): S^n \to L^{2n}$ are generic immersions. They are assumed to intersect in general position. We will define $\alpha(f, g), \beta(f, g) \in \mathbb{Z}[\pi_1 \partial W]$ as follows. Let $p \in \widetilde{\omega} f(S^n) \cap \widetilde{\omega} g(S^n)$. ε_p is the sign ± 1 of the intersection at p of $\widetilde{\omega} f(S^n)$ and $\widetilde{\omega} g(S^n)$ in L^{2n} . $g_p \in \pi_1(\partial N) = \pi_1(\partial W)$ is defined by $g_p = \{*(\text{base point in } \partial N) \xrightarrow{\gamma(f)} p_f \to (a \text{long the } S^1\text{-fibre } \widetilde{\omega}^{-1}(p) \text{ in the positive direction}) \to p_g \xrightarrow{\gamma(g)^{-1}} *\}$, where $\gamma(f)$ (or $\gamma(g)$) is the path of f (or g) and p_f (or p_g) is the point of $f(S^n)$

(or $g(S^n)$) over p, i.e., $\{p_f\} = f(S^n) \cap \widetilde{\omega}^{-1}(p)$ (or $\{p_g\} = g(S^n) \cap \widetilde{\omega}^{-1}(p)$). The positive direction of $\widetilde{\omega}^{-1}(p)$ is defined by $[L^{2n}] \times [\widetilde{\omega}^{-1}(p)] = [\partial N]$, where \times is homology cross product. $\alpha(f,g)$ is the summation $\sum_p \varepsilon_p g_p$ over all $p \in \widetilde{\omega} f(S^n) \cap \widetilde{\omega} g(S^n)$.

Now the definition of $\beta(f,g)$ is as follows: Let $q \in f(D^{n+1})$ $\cap g(D^{n+1})$. ε_q is the sign ± 1 of the intersection at q of $f(D^{n+1})$ and $g(D^{n+1})$ in E^{2n+2} . The orientation of E is $[E] = [\partial N] \times ($ the inward direction of E) and the orientation of D^{n+1} is $[D^{n+1}] = [S^n] \times ($ the radial inward direction of D^{n+1}). $g_q \in \pi_1(E) = \pi_1(\partial W)$ is defined by $g_q = \{* \xrightarrow{\gamma(f)} q \xrightarrow{\gamma(g)^{-1}} *\}$. Define $\beta(f,g) = \sum_q \varepsilon_q g_q$ over all $q \in f(D^{n+1}) \cap g(D^{n+1})$. Denote the group ring $Z[\pi_1 \partial W]$ by Λ . A pairing $\lambda(f,g)$ is defined by the following:

$$\lambda(f,g) = \alpha(f,g) + (-1)^{n+1}(1-t) \cdot \beta(f,g) \in \Lambda,$$

where $t \in \pi_1(\partial N) = \pi_1(\partial W)$ is the image of the positive generator of $\pi_1(S^1)$ under the homomorphism $\pi_1(S^1) \to \pi_1(\partial N)$ induced by the inclusion of an S^1 -fibre.

Note that neither α nor β are regular homotopy invariant. But we have

Proposition 2.1. $\lambda(f,g)$ is homotopy invariant and λ defines a map $\pi_{n+1}(E,\partial N) \times \pi_{n+1}(E,\partial N) \rightarrow \Lambda$.

It is easy to see that $\lambda(f,g) = (-1)^n \overline{\lambda(g,f)} \cdot t$, where $-: \Lambda \to \Lambda$ is defined by $\overline{\sum m_i t^i} = \sum m_i t^{-i}$. Define $V_n^t = \Lambda / \{a - (-1)^n \bar{a} \cdot t \mid a \in \Lambda\}$.

Let $f: (D^{n+1}, S^n) \rightarrow (E^{2n+2}, \partial N)$ be a generic immersion. We may define $\alpha(f) \in V_n^t$ and $\beta(f) \in V_{n+1} = \Lambda/\{a - (-1)^{n+1}\bar{a} \mid a \in \Lambda\}$ (Wall's notation [5]) in a similar manner as we defined $\alpha(f, g)$ and $\beta(f, g)$. We have only to replace intersection points by self-intersections. Multiplication induces $(1-t): V_{n+1} \rightarrow V_n^t$, thus $(1-t) \cdot \beta(f) \in V_n^t$.

Let v be a positive "tangent vector field" over ∂N along the S^1 fibres. Suppose that $f(S^n) \subset \partial N$ is transversal to each S^1 -fibre, then the restriction $v \mid f(S^n)$ is a never-zero normal field over $f(S^n)$. Let $\mathcal{O}(f) \in \mathbb{Z} = \pi_n(S^n)$ be the obstruction to extend the field $v \mid f(S^n)$ to a never-zero normal field over the whole of D^{n+1} . ($\mathcal{O}(f)$ is meaningful even in PL case.) Define $\mu(f) \in V_n^t$ as follows:

 $\mu(f) = \alpha(f) + (-1)^{n+1}(1-t) \cdot \beta(f) + (-1)^{n+1}\mathcal{O}(f).$

Proposition 2.2. $\mu(f)$ depends only on the homotopy class of f, and the map $\mu: \pi_{n+1}(E, \partial N) \rightarrow V_n^t$ is well defined.

Let $G = \pi_{n+1}(E, \partial N)$. The triple (G, λ, μ) has analogous properties to a special Hermitian form defined by Wall [5].

Proposition 2.3.

(i) Under the condition (H) of §1, G is a finitely generated stably free Λ -module.

(ii) $\lambda(f,g) = (-1)^n \lambda(g,f) \cdot t.$

(iii) For any $f \in G$, $\lambda(*, f) : G \to \Lambda$ is a Λ -homomorphism.

(iv) $\mu(f+g) = \mu(f) + \mu(g) + \lambda(f, g).$

 $(\mathbf{v}) \quad \lambda(f, f) = \mu(f) + (-1)^n \overline{\mu(f)} \cdot t.$

(vi) $\mu(af) = a\mu(f)\bar{a}$ for $a \in \Lambda$.

(vii) If $n \ge 3$, f can be represented by a normally embedded (n+1)-handle if and only if $\mu(f)=0$ ([1]).

In contrast to Wall's forms, our λ is not generally unimodular. Our form is related to a special Hermitian form over Z by the following.

Proposition 2.4. Let $G' = G \bigotimes_A Z$, $\lambda' = \widetilde{\omega}_* \circ \lambda$ and $\mu' = \overline{\widetilde{\omega}}_* \circ \mu$, where $\widetilde{\omega}_* \colon A \to Z$ and $\overline{\widetilde{\omega}}_* \colon V_n^t \to Z/\{m - (-1)^n m \mid m \in Z\}$ are induced by the projection $\widetilde{\omega} \colon \partial N \to L$. Then (G', λ', μ') is a special Hermitian $(-1)^n$ -form over Z.

3. Functor $P_{2n}(*)$. Let $\Lambda = Z[J_{q}]$. A triple $X = (G, \lambda, \mu)$ consist-

No. 2]

ing of a Λ -module G and maps $\lambda: G \times G \to \Lambda$ and $\mu: G \to V_n^t$ will be called a *Seifert form* if it satisfies (i)~(iv) of Proposition 2.3 and the statement of Proposition 2.4.

Definition 3.1. A Seifert form X is said to be *null-cobordant* if (i) there exists a sub Λ -module $H \subset G$ such that $\lambda(H \times H) = 0$ and $\mu(H) = 0$, (ii) H is mapped by the projection $G \rightarrow G \bigotimes_A Z$ onto a sub-kernel H' of $G' = G \bigotimes_A Z$. (Hence, G' is a kernel in the sense of Wall.)

For two Seifert forms X_1, X_2 , their direct sum $X_1 \oplus X_2$ is a triple $(G_1 \oplus G_2, \lambda_1 + \lambda_2, \mu_1 + \mu_2)$. The inverse (-X) is $(G, -\lambda, -\mu)$. Let A_{2n} be the Grothendieck group generated by all isomorphism classes of Seifert forms, B_{2n} the subgroup generated by all null-cobordant forms. Define an abelian group $P_{2n}(J_q)$ by the quotient A_{2n}/B_{2n} . Note that $X = (G, \lambda, \mu)$ represents zero element in $P_{2n}(J_q)$ if and only if there exists a null-cobordant form Y such that the direct sum $X \oplus Y$ is null-cobordant.

The obstruction element $\eta(W)$ in Theorem 1.1 is defined by the triple $(\pi_{n+1}(E, \partial N), \lambda, \mu)$.

Theorem 1.2 (i) follows from the fact that any Seifert form (G, λ, μ) over $Z[J_0]$ is represented by $(\pi_{n+1}(E, \partial N \cap E), \lambda, \mu)$ such that $W^{2n+2} = E \cup N$ is a 2n+2 disk and L^{2n} is an exterior *n*-connected locally flat proper submanifold of W^{2n+2} with $\partial L^{2n} \cong S^{2n-1}$. Other statements of Theorem 1.2 are immediate consequences of the definition of $P_{2n}(J_q)$.

References

- M. Kato and Y. Matsumoto: Simply connected surgery of submanifolds in codimension two. I (to appear).
- [2] M. Kervaire and J. Milnor: Groups of homotopy spheres. I. Ann. of Math., 77, 504-537 (1963).
- [3] J. Levine: Knot cobordism groups in codimension two. Comment. Math. Helv., 44, 229-244 (1969).
- [4] H. Seifert: Über das Geschlecht von Knoten. Math. Ann., 110, 571-592 (1934).
- [5] C. T. C. Wall: Surgery on Compact Manifolds. London Mathematical Society Monographs No. 1. Academic Press (1971).