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65. On the Numerical Rang of an Operator

By Takayuki FURUTA*) and Ritsuo NAKAMOTO**)

(Comm. by Kinjir.5 KUNUGI, M.J.A., March 12, 1971)

1. Introduction. In this paper, an operator T means a bounded
linear operator acting on a complex Hilbert space H.

Following after Halmos [6] we define the numerical range W(T)
and the numerical vadius w(T) of T as follows:

W(T) {(Tx, x) x II- 1}
and

w(T)--sup (11; e W(T)}.
W(T) is convex and the closure W(T) of W(T) contains the spectrum
a(T) o T; w(T) is a norm equivalent to the operator norm TII which
satisfies

2
and the power inequality ([3])

w(Tn) <__ w(T)n (n--l, 2, ...).
Definition 1 ([6]). An operator T is said to be convexoid if

W(T)= co a(T),
where co a(T) means the convex hull of the spectrum a(T) of T.

Definition 2 ([6]). An operator T is said to be spectraloid if
w(T)=v(T),

where r(T) means the spectral radius of T:
r(T)=sup {12]; 2 e a(T)}.

By [4], it is known that T is a spectraloid if and only if
w(T)=w(T) (n--l, 2, ...).

Definition 3 ([6]). An operator T is said to be normaloid if
T r(T)

or equivalently

IITII=--IITI! (n=l,2,...).
The classes of normaloids and convexoids are both contained in the

class of spectraloids (cf. [6; p. 115]).
Definition 4 ([1]). A unitary operator U is said to be cramped if

a(U) is contained in some semicircle:
a(U)c {e" t<_<_&., t-t

Let B(H) be the algebra o all bounded linear operators acting on

*) Faculty of Engineering, Ibaraki University, Hitachi.
**) Tennoji Senior Highschool, Osaka.



280 T. FURUTA and R. NAKAMOTO [Vol. 47,

H. The set of all regular elements of B(H) will be denoted by G(H)., {f e B(H)* f(1) 1= f
will be called the state space o B(H).

Our main results of this paper are as ollows"
(i) Convexoids operators are characterized: T is convexoid if

and only if T-2 is a spectraloid or every complex 2 (Theorem 3).
(ii) An elementary proof of Rota’s theorem (Theorem 4) basing

on the idea of Hildebrandt.
(iii) An another simple proof of Hildebrandt’s theorem

(Theorem 5).
(iv) A comment on a theorem of Berberian quoted in a recent

paper of Istrescu (Theorem 8).
We should express here our cordial thanks to Professors H. Choda

and M. Nakamura who encouraged us to prepare this paper.
2. Very recently, J. P. Williams [14 Theorem 1] proves an inter-

esting theorem"
Theorem 1 (Williams). 0 W(T) if and only if I1<= T-- for all

complex .
In this section, we shall give a variant of Williams’ theorem which

replaces the norm by the numerical radius:
Theorem 2. 0e W(T) if and only if I2]<__w(T--2) for all complex .
Our proof is an imitation of that of Williams. If 0 e-W(T), then

there exists a state f e 27 such as f(T)--0 by [2], [11] or [14] hence we
have for every complex

11--If(T--)l<__sup [g(T--)l=w(T--),

which proves the necessity.
Conversely, if I2l<=w(T--2) for every complex 2, then we have

which satisfies the requirement of Williams’ theorem; hence by the
theorem of Williams we have 0 + W(T).

Williams [14 Corollary I of Theorem 1] and Hildebrandt [7 Satz 5]

pointed out

Via similar reasoning for Theorem 2, we have
( 2 ) W(T)-

[14 Corollary 2 of Theorem 1] is incorrect, since a convexoid is not
always a normaloid by an example of Halmos [6; Problem 174]. The
ollowing theorem gives a characterization o convexoids based on the
idea of Williams"

Theorem :. An operator T is convexoid if and only if T-- is a

spectraloid for every complex .
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Proof. At first, we shall notice
( 3 ) co a(T)-- f {;l--/l<__r(T--/)}.
If T--2 is a spectraloid for every complex 2, w(T-2)-r(T--2) by Defi-
nition 2. Hence we have by (2) and (3)

co a(T)= { I-/l<r(T--/))

=
which states that T is a convexoid.

Conversely, if T is a convexoid, then w(T--2)--r(T--2) for every
2 since we have

W(T--2)- W(T)-2
--co a(T)---co a(T--)

hence T--2 is a spectraloid for every complex 2.
"If" part of Theorem 3 is a generalization of a theorem of [7*] and

[10]" T is a convexoid if T--2 is normaloid for every 2.
At this end, we wish to remark that Theorems 2 and 3 are valid

for Banach algebras as much as Williams [14].
3. In the theory of spectra of general operators, the following

two theorems due to G. C. Rota [9] and S. Hildebrandt [7] have funda-
mental importance"

Theorem 4 (Rota). For every operator T, we have
(4) r(T)-- inf

Theorem 5 (Hildebrandt). For every operator T, we have

(5) co a(T)-- W(S-1TS).
S e G(H)

Additionally, we shall point out that Rota’s theorem implies
( 6 ) r(T)-- inf w(S-TS),

8eG(H)

since we have
r(T) r(S-1TS) <_ w(S-ITS)< S-1TS

for every invertible S.
In this section, we shall give an elementary proof of Rota’s theorem

based on the idea of Hildebrandt [7]. Our proof is taken from a semi-
nor talk of Prof. H. Choda to whom the authors are indebted. Since
Williams [13] points out that Rota’s theorem implies Hildebrandt’s
theorem, our proof shows that the theorems of Rota and Hildebrandt
are nearly equivalent.

We shall begin with the following lemma due to Hildebrandt"
Lemma [7; Lemma 1]. If

(7) 0<11T’II=<
for all sufficiently large n, then for every > ? we can find an invertible
selfad]oint operator S such that
(s)
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For the sake of completeness, we shall give here the proof of the
lemma due to Hildebrandt with a minor modification. Define

R--__o T*T.

Then we have clearly R e B(H) by (7) and R >__ 1. Let S be the positive
square root of R.

Hence we have

Then S is invertible and hermitean, and we have
T*RT--(R--I)<=R.

STS- - S-T*SSTS-

< S-RS-ll ,

(10)

(11)

co a(T) co [ 1"
To prove the theorem, we need the ollowing well-known theorem"
Theorem 7 (Williams [12]). I 0 e W(A), Shen

a(A_B) W(B)
W(A)

and

as desired.
Now, we shall give a proof of Rota’s theorem. Since

r(T)- lim T TM

or every 0 and all sufficiently large n, we have
T II-<_ (r(T) + e)

Using the lemma, we have
STS- r(T) + 2e.

Since e is arbitrary, we have (4).
Now, we shall give a simple proof of Hildebrandt’s theorem. Our

proof is based on (1) and (3)"
co a(T)-- { --r(T--)}

{2 ]2-- Zig inf S-1TS-
Se G(H)

SeG(H)

W(S-TS).
SeG(H)

Remark. (1) Hildebrandt himself gives a simple proof of Theorem
5 after Lemma, cf. [7; Satz 4]. (2) In Theorems 4 and 5, it is sufficient
to assume that S runs over all invertible hermitean operators. (3)
Theorems 4 and 5 are still valid for any B*-algebra.

4. in this section we shall give the ollowing theorem"
Theorem 6. If T is an invertible operator which has the polar

decomposition T-UR with the cramped unitary operato,r U, then

( 9 ) 0 eo W(U*)
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for any B e B(H).
Proof of Theorem 6. Since U is cramped by the hypothesis,

W(U*) is contained in an open hal plane which excludes the origin.
Since R is strictly positive, W(R) is included in (0, c). Hence the right
hand side o (9) is included in the open hal plane which contains
W(U*)*, so that the origin is excluded. This proves the first half o
the theorem.

The proof o the second half is essentially identical with that of
[5; Theorem 3]. However, or the sake o completeness, we shall
describe briefly.

Putting A-U* and B-R in (11) i T=UR is the polar decom-
position of T, we have

(12) a(T) W(R)
W(U*)

Making the convex hulls of the both sides o (12), we have (10) as desired.
Theorem 6 implies the ollowing theorem of Berberian quoted in

[8] since co a(T) excludes the origin by (9) and (10):
Theorem 8 (Berberian). Let T be an invertible operator such that

U--T(T*T)-1/2 is cramped, then 0 e co a(T).
In addition, i T is convexoid, then

co a(T)= W(T)
by the definition, so that Theorems 6 and 8 imply our previous theorem:

Theorem 9 ([5]). If T is an invertible convexoid operator such
that U T(T* T)-I/2 is cramped, then 0 e W(T).

In [5] there are given another geometric properties of the spectra
of invertible convexoid operators which have the polar decomposition
T= UR with the cramped unitary operator U.
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