61. An Extension of an Integral. II

By Masahiro Takahashi
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô Kunugı, M. J. A., March 12, 1971)

1. Lemmas. This section is the continuation of section 3 in [1]. Assumption 3. \mathcal{I} is an abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$.
For each $f \in \mathscr{F}$, we can define a map μ_{f} of $\mathcal{R}(f)$ into J by $\mu_{f}(X)$ $=\mathcal{I}(X, X f)$ for $X \in \mathcal{R}(f)$.

Lemma 13. The map μ_{f} is a J-valued pre-measure on $\mathscr{R}(f)$ for any $f \in \mathscr{F}$.

Lemma 14. If $f, g \in \mathscr{F}$ and $X \in \mathscr{R}(f) \cap \mathscr{R}(g)$, then $X \in \mathscr{R}(f+g)$ and $\mu_{f+g}(X)=\mu_{f}(X)+\mu_{g}(X)$.

Lemma 15. Suppose that $f \in \mathscr{F}, X \in \mathcal{S}$, and $Y \in \bar{\Sigma}$. Then $X Y \in \mathscr{R}(f)$ if and only if $X \in \mathcal{R}(Y f)$, and these mutually equivalent conditions imply that $\mu_{f}(X Y)=\mu_{Y f}(X)$.

Proof. This follows from Lemma 7 in [1].
Let $C V$ be the system of neighbourhoods of $0 \in J$. Denote by Ω the set of all elements $(X, f) \in \widetilde{\Omega}$ satisfying the following condition: for any $\xi, \eta \in \Sigma(f)$ such that $\bar{\xi}=\bar{\eta}=X$ and for any $V \in \varnothing V$, there exists a positive integer n such that $\mu_{f}(\xi(l))-\mu_{f}(\eta(m)) \in V$ for any $l \geqq n$ and $m \geqq n$.

Lemma 16. $(X Y, f) \in \Omega$ if and only if $(X, Y f) \in \Omega$ for any $X, Y \in \bar{\Sigma}$ and $f \in \mathscr{F}$.

Proof. Suppose that $(X Y, f) \in \Omega$. Lemma 11 implies that $(X, Y f) \in \tilde{\Omega}$. Let ξ and η be elements of $\Sigma(Y f)$ such that $\bar{\xi}=\bar{\eta}=X$ and let V be an element of $\mathbb{C V}$. It follows from Corollary to Lemma 7 that $Y \xi, Y \eta \in \Sigma(f)$ and $\overline{Y \xi}=\overline{Y \eta}=X Y$. Hence we have an n such that $\mu_{f}((Y \xi)(l))-\mu_{f}((Y \eta)(m)) \in V$ for any $l \geqq n$ and $m \geqq n$. For this n and for $l \geqq n$ and $m \geqq n$ we have $\mu_{Y f}(\xi(l))-\mu_{Y f}(\eta(m))=\mu_{f}(\xi(l) Y)-\mu_{f}(\eta(m) Y)$ $=\mu_{f}((Y \xi)(l))-\mu_{f}((Y \eta)(m)) \in V$. Thus we have $(X, Y f) \in \Omega$. Conversely suppose that $(X, Y f) \in \Omega$. $(X Y, f) \in \tilde{\Omega}$ follows from Lemma 11. Let ζ_{i} be elements of $\Sigma(f)$ such that $\bar{\zeta}_{i}=X Y$ for $i=1,2$, and let V be an element of $C V$. Lemma 8 implies that there are $\xi_{i} \in \Sigma(Y f)$ such that $\bar{\xi}_{i}=X$ and $\zeta_{i}=Y \xi_{i}$ for $i=1,2$. Since $(X, Y f) \in \Omega$, we have an n such that $\mu_{Y f}\left(\xi_{1}\left(l_{1}\right)\right)-\mu_{Y f}\left(\xi_{2}\left(l_{2}\right)\right) \in V$ for any $l_{i} \geqq n$. For this n and for $l_{i} \geqq n, i=1,2$, we have $\mu_{f}\left(\zeta_{1}\left(l_{1}\right)\right)-\mu_{f}\left(\zeta_{2}\left(l_{2}\right)\right)=\mu_{f}\left(\left(Y \xi_{1}\right)\left(l_{1}\right)\right)-\mu_{f}\left(\left(Y \xi_{2}\right)\left(l_{2}\right)\right)=\mu_{f}\left(\xi_{1}\left(l_{1}\right) Y\right)$ $-\mu_{f}\left(\xi_{2}\left(l_{2}\right) Y\right)=\mu_{Y f}\left(\xi_{1}\left(l_{1}\right)\right)-\mu_{Y f}\left(\xi_{2}\left(l_{2}\right)\right) \in V$, which implies that $(X Y, f) \in \Omega$. Thus the lemma is proved.

Denote by $\mathcal{S}(f)$ the set $\{X \mid(X, f) \in \Omega\}$ for each $f \in \mathscr{F}$. We have another expression of $\mathcal{S}(f)$ as follows:

Lemma 17. For any $f \in \mathcal{F}, \mathcal{S}(f)$ is the set of all elements $X \in \overline{\Sigma(f)}$ satisfying the following condition: for any $\xi, \eta \in \Sigma(f)$ such that $\bar{\xi}=\bar{\eta}$ $=X$ and for any $V \in \mathcal{V}$, there exists a positive integer n such that $\mu_{f}(\xi(l))-\mu_{f}(\eta(m)) \in V$ for any $l \geqq n$ and $m \geqq n$.

Lemma 18. For any $f \in \mathscr{F}, \mathcal{S}(f)$ is an ideal of $\bar{\Sigma}$ and is a pseudo-σ-ring.

Proof. It is sufficient to show that 1) $X Y \in \mathcal{S}(f)$ for any $X \in \mathcal{S}(f)$ and $Y \in \bar{\Sigma}$, and 2) $X_{1}+X_{2} \in \mathcal{S}(f)$ for any $X_{1}, X_{2} \in \mathcal{S}(f)$ such that $X_{1} X_{2}=0$. Let us first prove 1). Put $Z=X Y . \quad X \in \mathcal{S}(f)$ implies that $X \in \overline{\Sigma(f)}$ and hence it follows from Lemma 6 that $Z=X Y \in \overline{\Sigma(f)}$. Let ξ and η be elements of $\Sigma(f)$ such that $\bar{\xi}=\bar{\eta}=Z$ and let V be an element of \mathcal{V}. Assume that for any positive integer n there were $l_{n} \geqq n$ and $m_{n} \geqq n$ such that $\mu_{f}\left(\xi\left(l_{n}\right)\right)-\mu_{f}\left(\eta\left(m_{n}\right)\right) \notin V$. It follows from our assumption that there are sequences l_{k} and $m_{k}, k=1,2, \cdots$, such that $\max \left(l_{k}, m_{k}\right)$ $<\min \left(l_{k+1}, m_{k+1}\right)$ and such that $\mu_{f}\left(\xi\left(l_{k}\right)\right)-\mu_{f}\left(\eta\left(m_{k}\right)\right) \notin V$ for each $k=1,2, \cdots$. Now Lemma 6 implies that $X+Z \in \overline{\Sigma(f)}$ and hence we can write $X+Z=\bar{\zeta}$ for some $\zeta \in \Sigma(f)$. Putting $\xi^{\prime}(n)=\xi\left(l_{n}\right)+\zeta(n)$ and $\eta^{\prime}(n)=\eta\left(m_{n}\right)+\zeta(n)$ for $n=1,2, \cdots$, we have $\xi^{\prime}, \eta^{\prime} \in \Sigma(f), \bar{\xi}^{\prime}=\bar{\xi}+\bar{\zeta}=Z$ $+(X+Z)=X$, and $\bar{\eta}^{\prime}=X$. Since $X \in \mathcal{S}(f)$ we have an n such that $\mu_{f}\left(\xi^{\prime}(l)\right)-\mu_{f}\left(\eta^{\prime}(m)\right) \in V$ for any $l \geqq n$ and $m \geqq n$. On the other hand we have $\mu_{f}\left(\xi^{\prime}(n)\right)-\mu_{f}\left(\eta^{\prime}(n)\right)=\mu_{f}\left(\xi\left(l_{n}\right)+\zeta(n)\right)-\mu_{f}\left(\eta\left(m_{n}\right)+\zeta(n)\right)=\mu_{f}\left(\xi\left(l_{n}\right)\right)$ - $\mu_{f}\left(\eta\left(m_{n}\right)\right) \notin V$, which is a contradiction. Hence we have an n such that $\mu_{f}(\xi(l))-\mu_{f}(\eta(m)) \in V$ for any $l \geqq n$ and $m \geqq n$, and thus Lemma 17 implies that $X Y=Z \in \mathcal{S}(f)$.

Now let us prove 2). That $X_{1}+X_{2} \in \overline{\Sigma(f)}$ follows from Lemma 6. Let ξ and η be elements of $\Sigma(f)$ such that $\bar{\xi}=\bar{\eta}=X_{1}+X_{2}$ and let V be an element of $C V$. We have $U \in C V$ such that $2 U \subset V$. Since $X_{i} \xi$ and $X_{i} \eta$ are elements of $\Sigma(f)$ (Corollary 2 to Lemma 6), since $\overline{X_{i} \xi}=X_{i} \bar{\xi}$ $=X_{i}\left(X_{1}+X_{2}\right)=X_{i}$, and since $\overline{X_{i} \eta}=X_{i}$, we have $n_{i}, i=1,2$, such that $\mu_{f}\left(X_{i} \xi\left(l_{i}\right)\right)-\mu_{f}\left(X_{i} \eta\left(m_{i}\right)\right) \in U$ for any $l_{i} \geqq n_{i}$ and $m_{i} \geqq n_{i}$. For $n=\max$ $\cdot\left(n_{1}, n_{2}\right)$, and for any $l \geqq n$, and any $m \geqq n$, we have $\mu_{f}(\xi(l))-\mu_{f}(\eta(m))$ $=\mu_{f}\left(\left(X_{1}+X_{2}\right) \xi(l)\right)-\mu_{f}\left(\left(X_{1}+X_{2}\right) \eta(m)\right)=\left\{\mu_{f}\left(X_{1} \xi(l)\right)-\mu_{f}\left(X_{1} \eta(m)\right)\right\}$ $+\left\{\mu_{f}\left(X_{2} \xi(l)\right)-\mu_{f}\left(X_{2} \eta(m)\right)\right\} \in U+U \subset V$. Hence it follows that $X_{1}+X_{2}$ $\in \mathcal{S}(f)$ and thus the lemma is proved.

Assumption 4. For $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i} \downarrow 0(i \rightarrow \infty)$, and for any $g=\mathcal{G}$, it holds that $\mathcal{I}\left(X_{i}, g\right) \rightarrow 0(i \rightarrow \infty)$.

Lemma 19. The map μ_{f} is a J-valued measure on $\mathcal{R}(f)$ for any $f \in \mathscr{F}$.

Proof. Suppose that $X_{i} \in \mathcal{R}(f), i=1,2, \cdots$, and that $X_{i} \downarrow 0$ $(i \rightarrow \infty)$. Then it follows from Assumption 4 that $\mu_{f}\left(X_{i}\right)=\mathcal{J}\left(X_{i}, X_{i} f\right)$
$=\mathcal{I}\left(X_{i}, X_{i} X_{1} f\right)=\mathcal{I}\left(X_{i}, X_{1} f\right) \rightarrow 0(i \rightarrow \infty)$. Hence Lemma 13 implies that μ_{f} is a measure.

Lemma 20. $\mathcal{R}(f) \subset \mathcal{S}(f) \subset \overline{\Sigma(f)} \subset \bar{\Sigma}$ for any $f \in \mathcal{F}$.
Proof. Let us prove that $\mathcal{R}(f) \subset \mathcal{S}(f)$. Let X be an element of $\mathcal{R}(f)$. That $X \in \overline{\Sigma(f)}$ follows from Corollary 1 to Lemma 6. Let ξ_{i} be elements of $\Sigma(f)$ such that $\bar{\xi}_{i}=X$, for $i=1,2$, and let V be an element of \mathcal{V}. We have $U \in \mathscr{V}$ such that $U-U \subset V$. Since $\xi_{i}(j) \uparrow X(j \rightarrow \infty)$ and since μ_{f} is a measure, it holds that $\mu_{f}\left(\xi_{i}(j)\right) \rightarrow \mu_{f}(X)(j \rightarrow \infty)$. Hence, for $i=1,2$, we have n_{i} such that $\mu_{f}\left(\xi_{i}(j)\right)-\mu_{f}(X) \in U$ for any $j \geqq n_{i}$. For $n=\max \left(n_{1}, n_{2}\right)$, and for any $l \geqq n$ and any $m \geqq n$, we have $\mu_{f}\left(\xi_{1}(l)\right)-\mu_{f}\left(\xi_{2}(m)\right)=\left\{\mu_{f}\left(\xi_{1}(l)\right)-\mu_{f}(X)\right\}-\left\{\mu_{f}\left(\xi_{2}(m)\right)-\mu_{f}(X)\right\} \in U-U \subset V$. This implies that $X \in \mathcal{S}(f)$ and hence $\mathcal{R}(f) \subset \mathcal{S}(f)$.

Corollary 1. $\mathcal{S} \subset \mathcal{S}(g)$ for any $g \in \mathcal{G}$.
Proof. This follows from Lemma 3.
Corollary 2. $\mathcal{S} \times \mathcal{G} \subset \Omega \subset \tilde{\Omega} \subset \bar{\Sigma} \times \mathscr{F}$.
Proof. For $(X, g) \in \mathcal{S} \times \mathcal{G}$, Corollary 1 implies that $X \in \mathcal{S}(g)$. This implies $(X, g) \in \Omega$, and hence $\mathcal{S} \times \mathcal{G} \subset \Omega$.

Put $\mathcal{G}(X)=\{f \mid(X, f) \in \Omega\}$ for each $X \in \bar{\Sigma}$. Then we have
Lemma 21. $\mathcal{G}(X) \subset \widetilde{G}(X) \subset \mathscr{F}$ for any $X \in \bar{\Sigma}$. Further $\mathcal{G} \subset \mathcal{G}(X)$ if $X \in \mathcal{S}$.

Proof. For $X \in \mathcal{S}, \mathcal{G} \subset \mathcal{G}(X)$ follows from Corollary 2 to Lemma 20.
Lemma 22. Suppose that $X \in \bar{\Sigma}, f_{i} \in \mathcal{G}(X)$ for $i=1,2, \cdots, n$, and that $f_{0} \in \widetilde{G}(X)$. Further suppose for any $V \in \mathcal{V}$ there exists $U \in \mathcal{V}$ satisfying the following condition: if Y and Z are elements of $\bigcap_{i=0}^{n} \mathcal{R}\left(f_{i}\right)$ such that $Y \subset X$ and $Z \subset X$, and if $\mu_{f_{i}}(Y)-\mu_{f_{i}}(Z) \in U$ for any $i=1,2, \cdots, n$, then $\mu_{f_{0}}(Y)-\mu_{f_{0}}(Z) \in V$. Then it holds that $f_{0} \in \mathcal{G}(X)$.

Proof. We are proving that $\left(X, f_{0}\right) \in \Omega$. Let ξ and η be elements of $\Sigma\left(f_{0}\right)$ such that $\bar{\xi}=\bar{\eta}=X$ and let W be an element of $C V$. Write $\mu_{i}=\mu_{f_{i}}$ for $i=0,1, \cdots, n$. Then it suffices to show the existence of a positive integer r such that $\left.\left.\mu_{0}(\xi) p\right)\right)-\mu_{0}(\eta(q)) \in W$ for any $p \geqq r$ and $q \geqq r$. Let us show this.

Since $\left(X, f_{i}\right) \in \tilde{\Omega}$ for any $i=0,1, \cdots, n$, Corollary 2 to Lemma 10 implies the existence of $\zeta \in \bigcap_{i=0}^{n} \Sigma\left(f_{i}\right)$ such that $\bar{\zeta}=X$. Put $\Re=\{(j, k) \mid j$ and k are positive integers $\}$ and write $(j, k) \leqq\left(j^{\prime}, k^{\prime}\right)$, for $(j, k),\left(j^{\prime}, k^{\prime}\right) \in \mathscr{I}$, if and only if the two inequalities $j \leqq j^{\prime}$ and $k \leqq k^{\prime}$ hold. Then \mathcal{N} becomes a directed set and hence, putting $a_{(j, k)}=\mu_{0}(\xi(j) \zeta(k))$, we have a directed sequence $a_{(j, k)},(j, k) \in \mathcal{I}$, in J.

We assert that the sequence $a_{(j, k)},(j, k) \in \mathcal{I}$, is a Cauchy sequence. Suppose this were false. Then we have an element V_{0} of $C V$ satisfying the condition: for any $(j, k) \in \mathscr{N}$ there is $\left(j^{\prime}, k^{\prime}\right) \in \mathscr{N}$ such that (j, k) $\leqq\left(j^{\prime}, k^{\prime}\right)$ and $a_{\left(j^{\prime}, k^{\prime}\right)}-a_{(j, k)} \notin V_{0}$. Thus we have sequences of positive integers j_{m}, k_{m}, and l_{m}, where $m=1,2, \cdots$, such that, for each m, l_{m+1}
$=\max \left(m, j_{m}, k_{m}\right),\left(l_{m}, l_{m}\right) \leqq\left(j_{m}, k_{m}\right)$, and $a_{\left(j_{m}, k_{m}\right)}-a_{\left(l_{m}, l_{m)}\right.} \notin V_{0}$. Then $\left(l_{1}, l_{1}\right) \leqq\left(j_{1}, k_{1}\right) \leqq\left(l_{2}, l_{2}\right) \leqq\left(j_{2}, k_{2}\right) \leqq \cdots$, and $\lim _{m \rightarrow \infty} l_{m}=\infty$. Put $\lambda(2 m-1)$ $=\xi\left(l_{m}\right) \zeta\left(l_{m}\right)$ and $\lambda(2 m)=\xi\left(j_{m}\right) \zeta\left(k_{m}\right)$ for $m=1,2, \ldots$. Then we have $\lambda \in \bigcap_{i=0}^{n} \Sigma\left(f_{i}\right)$ and $\bar{\lambda}=X$. Now let U_{0} be an element of $C V$ satisfying the condition: if Y and Z are elements of $\bigcap_{i=0}^{n} \mathcal{R}\left(f_{i}\right)$ such that $Y \subset X$ and $Z \subset X$, and if $\mu_{i}(Y)-\mu_{i}(Z) \in U_{0}$ for any $i \geqq 1$, then $\mu_{0}(Y)-\mu_{0}(Z) \in V_{0}$. Since $\left(X, f_{i}\right) \in \Omega$ and $\lambda \in \Sigma\left(f_{i}\right)$ for $i \geqq 1$, and since $\bar{\lambda}=X$, we have a positive integer m_{i}, for each $i=1,2, \cdots, n$, such that $\mu_{i}(\lambda(p))-\mu_{i}(\lambda(q)) \in U_{0}$ for any $p \geqq m_{i}$ and $q \geqq m_{i}$. Put $m=\max \left(m_{1}, m_{2}, \cdots, m_{n}\right)$. Then it follows from $2 m>2 m-1 \geqq m=\max m_{i}$ that $\mu_{i}(\lambda(2 m))-\mu_{i}(\lambda(2 m-1)) \in U_{0}$ for each $i \geqq 1$. For this m it follows that $a_{\left(j_{m}, k_{m}\right)}-a_{\left(l_{m}, l_{m}\right)}=\mu_{0}\left(\xi\left(j_{m}\right) \zeta\left(k_{m}\right)\right)$ $-\mu_{0}\left(\xi\left(l_{m}\right) \zeta\left(l_{m}\right)\right)=\mu_{0}(\lambda(2 m))-\mu_{0}(\lambda(2 m-1)) \in V_{0} . \quad$ This is a contradiction and hence our assertion is true.

That which is proved above implies that, for $W_{0} \in C V$ such that $-W_{0}=W_{0}$ and $8 W_{0} \subset W$, there is $\left(j_{0}, k_{0}\right) \in \mathscr{I}$ such that $\alpha_{(j, k)}-a_{\left(j_{0}, k_{0}\right)} \in W_{0}$ for any $(j, k) \geqq\left(j_{0}, k_{0}\right)$. Let U be an element of $\left.Q\right)$ satisfying the condition: if Y and Z are elements of $\bigcap_{i=0}^{n} \mathcal{R}\left(f_{i}\right)$ such that $Y \subset X$ and $Z \subset X$, and if $\mu_{i}(Y)-\mu_{i}(Z) \in U$ for any $i \geqq 1$, then $\mu_{0}(Y)-\mu_{0}(Z) \in W_{0}$. Since $\left(X, f_{i}\right) \in \Omega$, for $i \geqq 1$, since $\xi \zeta$ and ζ are elements of $\Sigma\left(f_{i}\right)$, and since $\overline{\xi \zeta}=\bar{\zeta}=X$, we have a positive integer m_{i}, for each $i=1,2, \cdots, n$, such that $\mu_{i}((\xi \zeta)(p))-\mu_{i}(\zeta(q)) \in U$ for any $p \geqq m_{i}$ and $q \geqq m_{i}$. Put $r_{1}=\max \left(j_{0}, k_{0}, m_{1}, m_{2}, \cdots, m_{n}\right)$.

For the integer r_{1} defined above, we shall show that $\mu_{0}(\xi(p))$ $-\mu_{0}(\zeta(q)) \in 4 W_{0}$ for any $p \geqq r_{1}$ and $q \geqq r_{1}$. Since $\mu_{i}((\xi \zeta)(p))-\mu_{i}(\zeta(q)) \in U$ for any $i \geqq 1$, it follows from the definition of U that $\mu_{0}((\xi \zeta)(p))$ $-\mu_{0}(\zeta(q)) \in W_{0}$. Hence, $\mu_{0}\left((\xi \zeta(p))=\mu_{0}(\xi(p) \zeta(p))=a_{(p, p)}\right.$ implies that 1) $a_{(p, p)}-\mu_{0}(\zeta(q)) \in W_{0}$. Now put $Y=\xi(p)$ and $Y_{k}=\xi(p) \zeta(k)$ for $k=1,2, \cdots$. Then we have $Y, Y_{k} \in \mathcal{R}\left(f_{0}\right)$, for each k, and $Y_{k} \uparrow Y$ $(k \rightarrow \infty)$. Hence it follows from Lemma 19 that $\mu_{0}\left(Y_{k}\right) \rightarrow \mu_{0}(Y)(k \rightarrow \infty)$ and thus we have $k_{1} \geqq k_{0}$ such that $\mu_{0}\left(Y_{k_{1}}\right)-\mu_{0}(Y) \in W_{0}$. For this $k_{1}, a_{\left(p, k_{1}\right)}=\mu_{0}\left(\xi(p) \zeta\left(k_{1}\right)\right)=\mu_{0}\left(Y_{k_{1}}\right)$ implies that 2) $\mu_{0}(\xi(p))-a_{\left(p, k_{1}\right)} \in W_{0}$. Further, since $\left(p, k_{1}\right) \geqq\left(j_{0}, k_{0}\right)$ and since $(p, p) \geqq\left(j_{0}, k_{0}\right), a_{\left(p, k_{1}\right)}-a_{\left(j_{0}, k_{0}\right)}$ and $a_{(p, p)}-a_{\left(j_{0}, k_{0}\right)}$ are elements of W_{0} and thus we have 3) $a_{\left(p, k_{1}\right)}-a_{(p, p)} \in 2 W_{0}$. Then it follows from 1), 2), and 3), that $\mu_{0}(\xi(p))-\mu_{0}(\zeta(q)) \in 4 W_{0}$.

In an analogous way, we have a positive integer r_{2} such that $\mu_{0}(\eta(p))-\mu_{0}(\zeta(q)) \in 4 W_{0}$ for any $p \geqq r_{2}$ and $q \geqq r_{2}$. For $r=\max \left(r_{1}, r_{2}\right)$, and for any $p \geqq r$ and $q \geqq r$, we have $\mu_{0}(\xi(p))-\mu_{0}(\eta(q))=\left\{\mu_{0}(\xi(p))\right.$ $\left.-\mu_{0}(\zeta(r))\right\}-\left\{\mu_{0}(\eta(q))-\mu_{0}(\zeta(r))\right\} \in 4 W_{0}-4 W_{0}=8 W_{0} \subset W$. This completes the proof of Lemma 22.

Corollary. For any $X \in \bar{\Sigma}, \mathcal{G}(X)$ is a subgroup of \mathscr{F}.
Proof. It suffices to show that $f_{1}-f_{2} \in \mathcal{G}(X)$ for given $f_{i} \in \mathcal{G}(X)$, $i=1,2$. For $f_{0}=f_{1}-f_{2}$, it follows from Lemma 12 that $f_{0} \in \widetilde{\mathcal{G}}(X)$. For
any $V \in \subset$, there exists $U \in C V$ such that $U-U \subset V$. Let Y and Z be elements of $\bigcap_{i=0}^{2} \mathcal{R}\left(f_{i}\right)$ such that $Y \subset X$ and $Z \subset X$ and suppose that $\mu_{f_{i}}(Y)-\mu_{f_{i}}(Z) \in U$ for $i=1,2$. Then $\mu_{f_{0}}(Y)-\mu_{f_{0}}(Y)-\mu_{f_{0}}(Z)=\left\{\mu_{f_{1}}(Y)\right.$ $\left.-\mu_{f_{2}}(Y)\right\}-\left\{\mu_{f_{1}}(Z)-\mu_{f_{2}}(Z)\right\}=\left\{\mu_{f_{1}}(Y)-\mu_{f_{1}}(Z)\right\}-\left\{\mu_{f_{2}}(Y)-\mu_{f_{2}}(Z)\right\} \in U$ $-U \subset V$. Thus the lemma implies that $f_{1}-f_{2}=f_{0} \in \mathcal{G}(X)$.

Assumption 5. J is Hausdorff and complete.
Lemma 23. For each $f \in \mathcal{F}$, the measure μ_{f} is uniquely extended to a J-valued measure on $\mathcal{S}(f)$.

Proof. Lemmas 4,5, and 17 imply that our lemma follows from Theorems 1 and 2 in [5].

For each $f \in \mathscr{F}$, denote by $\bar{\mu}_{f}$ the extended measure on $\mathcal{S}(f)$ stated in Lemma 23. Then we have

Lemma 24. There exists a unique map $\overline{\mathcal{I}}$ of Ω into J satisfying the following condition: if $(X, f) \in \Omega$, if $X_{i} \in \mathcal{S}$ with $X_{i} f \in \mathcal{G}, i=1,2, \cdots$, and if $X_{i} \uparrow X(i \rightarrow \infty)$, then $\mathcal{I}\left(X_{i}, X_{i} f\right) \rightarrow \overline{\mathcal{I}}(X, f)(i \rightarrow \infty)$. Further it holds that $\overline{\mathcal{J}}(X, f)=\bar{\mu}_{f}(X)$ for any $(X, f) \in \Omega$.

For the map $\overline{\mathcal{J}}$ of Ω into J stated above we have
Lemma 25. The map $\overline{\mathcal{I}}$ has the following properties:

1) $\overline{\mathcal{J}}$ is an extension of \mathcal{I}.
2) Suppose that $X, Y \in \bar{\Sigma}$ and that $f \in \mathscr{F}$. Then $(X Y, f) \in \Omega$ if and only if $(X, Y f) \in \Omega$. Further these mutually equivalent conditions imply that $\overline{\mathcal{J}}(X Y, f)=\overline{\mathcal{J}}(X, Y f)$.
3) For any fixed $f \in \mathscr{F}$, the map $\overline{\mathcal{J}}_{f}(X)=\overline{\mathcal{J}}(X, f)$ on $\mathcal{S}(f)$ is a measure.
4) For any fixed $X \in \bar{\Sigma}$, the map $\overline{\mathcal{J}}_{X}(f)=\mathcal{I}(X, f)$ on $\mathcal{G}(X)$ is a homomorphism.

Proof. 1) and 3) follow immediately from Lemma 24. Let us prove 2). The equation $\overline{\mathcal{J}}(X Y, f)=\overline{\mathcal{J}}(X, Y f)$ is proved as follows. Since $(X, Y f) \in \Omega$, we have $\xi \in \Sigma(Y f)$ such that $\bar{\xi}=X$. Lemma $15 \mathrm{im}-$ plies that $\mu_{Y f}(\xi(n))=\mu_{f}(Y \xi(n))$, for $n=1,2, \cdots$, and hence we have $\overline{\mathcal{J}}(X, Y f)=\bar{\mu}_{Y f}(X)=\lim _{n \rightarrow \infty} \mu_{Y f}(\xi(n))=\lim _{n \rightarrow \infty} \mu_{f}(Y \xi(n))=\bar{\mu}_{f}(X Y)=\overline{\mathcal{J}}(X Y, f)$. To prove 4), suppose that $X \in \bar{\Sigma}$ and that $f, g \in \mathcal{G}(X)$. Then we are proving that $\overline{\mathcal{J}}(X, f+g)=\overline{\mathcal{J}}(X, f)+\overline{\mathcal{J}}(X, g)$. Since $(X, f),(X, g)$, and $(X, f+g)$ are elements of Ω, there exists an element ξ of $\Sigma(f) \cap \Sigma(g)$ $\cap \Sigma(f+g)$ such that $\bar{\xi}=X$. Then it follows that $\overline{\mathcal{J}}(X, f+g)=\bar{\mu}_{f+g}(X)$ $=\lim _{n \rightarrow \infty} \mu_{f+g}(\xi(n))=\lim _{n \rightarrow \infty}\left\{\mu_{f}(\xi(n))+\mu_{g}(\xi(n))\right\}=\lim _{n \rightarrow \infty} \mu_{f}(\xi(n))+\lim _{n \rightarrow \infty} \mu_{g}(\xi(n))$ $=\bar{\mu}_{f}(X)+\bar{\mu}_{g}(X)=\overline{\mathcal{J}}(X, f)+\overline{\mathcal{J}}(X, g)$. Thus the lemma is proved.
2. Proof of Theorems 1 and 2 in [1]. Under the notations and the assumptions in section 2 in [1], Assumptions 1 and 2 in section 3 in [1] are satisfied (M is the base space of Γ). Note that $\overline{\mathcal{S}}$ is the σ-ring $\bar{\Sigma}$ in section 3 in [1]. For an element μ of Q, denote by $\mathcal{J}=\mathcal{J}_{\mu}$
the derived abstract integral from σ relative to μ. Then Assumptions 3,4 , and 5 in section 1 are satisfied. Putting $\Omega_{\mu}=\{(X, f) \mid(X, f, \mu) \in \Omega\}$, where Ω is the carrier of Γ, we see that Ω_{μ} coincides with the set Ω in section 1. Denote by $\overline{\mathcal{J}}_{\mu}$ the map $\overline{\mathcal{J}}$ of Ω_{μ} into J stated in Lemma 24.

Then, 1), 2), 3), and 4) in Theorem 1 follows from Corollary 2 to Lemma 20, Lemma 16, Lemma 18, and Corollary to Lemma 22, respectively.

To prove Theorem 2, put $\bar{\sigma}(X, f, \mu)=\overline{\mathcal{G}}_{\mu}(X, f)$ for $(X, f, \mu) \in \Omega$. Then we have a map $\bar{\sigma}$ of Ω into J and it follows from Lemma 25 that $\bar{\sigma}$ satisfies the conditions in Theorem 2. The uniqueness of $\bar{\sigma}$ follows from (i), (ii), and (iv) in the proof of Proposition 1 in [1].

References

[1] M. Takahashi: An extension of an integral. I. Proc. Japan Acad., 47, 257-261 (1971).
[2] -: Integration with respect to the generalized measure. I, II. Proc. Japan Acad., 43, 178-185 (1967).
[3] -: Integration with respect to the generalized measure. III. Proc. Japan Acad., 44, 452-456 (1968).
[4] -: Integration with respect to the generalized measure. IV. Proc. Japan Acad., 44, 457-461 (1968).
[5] --: An extension of a generalized measure. Proc. Japan Acad., 42, 710-713 (1966).

