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103. On Some Examples oI Non.normal Operators

By Masatoshi FuJ
Fuse Senior Highschool

(Comm. by Kinjir6 KUNUCI, M. J. .., May 12, 1971)

1. Introduction. Following after the terminology of Halmos [4],
consider a (bounded linear) operator T acting on a Hilbert space .
As usual, we shall call

W(T)--{(Txlx) [Ix[[=l}
the numerical range o T and

r(T)=sup {11; 2 e a(T)}
the spectral radius of T, where a(T) is the spectrum of T. An oper-
ator T is called normaloid if T]]=r(T) and convexoid if W(T)=co a(T)
where W(T)is the closure oJ W(T) and co S is the convex hull of S.
We shall also say that an operator T satisfies the growth condition
(Gx) if

1(T--/2)-1 I=<
dist (, a(T))

for any e a(T). An operator satisfying the condition (G) is a eon-
vexoid.

In a recent paper [7], Lueeke proves the following theorem which
gives a method of construction of operators satisfying the eondition
(G)"

Theorem A (Luecke). If A is an operator acting on a Hilbert
space , then there is an operator B acting on a Hilbert space such
that their direct sum T=AB acting on ( satisfies the condition
(G).

In his proof, the desired B satisfies the normality and W(A)= a(B).
Using Theorem A, he can prove that there is an operator satisfying
the condition (G) which is not a normaloid.

Inspired by Luecke’s work and a seminar talk of R. Nakamoto
(Theorem 5 in the below), we shall adapt the method to construct ano-
ther examples of operators in 2 and apply them to study or a ew
relations between classes of non-normal operators in 3.

For our purpose, we shall introduce two classes of operators which
are systematically discussed by Hildebrandt [5] without their names"

Definition Bo An operator T is called a numeroid (resp. spectroid)
if the closed numerical range W(T)(resp. the spectrum 6(T)) is spec-
tral set for T in the sense of von Neumann [8].
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The author wishes to thnk Prof. Luecke who gives an opportunity
for the author to read [7] before publication.

2. Construction. We begin with the following simple case"

Theorem 1, If A is an operator, then there is an operator B such
that T--AB is a normaloid.

Proof, Take a normaloid B such as IIBI >_-]IAI[. Then
r(T)=max {r(A), r(B)}--r(S)=llBIl=

and T is a normaloid.
Theorem 2. If A is an operator and B is a convexoid such as

W(A) W(B), then T=AB is a convexoid.
Proof. Since W(B)-co a(B), we have

lZ(T) =co {lZ(A) U ITV(B)} =co IYV(B) =co a(B)
=co {a(A) U a(B)}-co a(T),

so that T is a convexoid.
The following two theorems may justify our naming postfix "oid"

in affinity with the previous two theorems.
Theorem 3. If A is an operator which has S as a spectral set,

and B is an operator which is a numeroid such as S W(B), then
T=AB is a numeroid.

Proof. If f is a rational function which has poles outside of W(B)
and Ilfllgl where Ilfll=sup {If(2)l 2 e W(B)}, then we have

f(T) f(AB) f(A)f(B)
max {11 f(A)II, f(B)II} <= f <= 1

since VV(B) is a spectral set for A by a theorem of von Neumann [8],
so that T is a numeroid.

Theorem 4. If A has S as a spectral set and B is a spectroid
with Sa(B), then T=AB is a spectroid.

Proof. One needs to replace a(B) instead of W(B) in Theorem 3,
so that we shall omit the details.

Remark. By the above theorems, we can easily conclude that the
class of all spectroids (resp. numeroids, convexoids, normaloids) is not
invariant under the reduction.

:3. Applications. Clancey [2] proves that a hyponormal operator
needs not a spectroid. In the converse direction, we have

Theorem 5 (Nakam6to), There is a spectroid which is not
hyponormal.

Proof, We wish to construct a spectroid using Theorem 4.
Put

then we have
1 Da(A) {0}, W(A) - AII 1,
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where D is the unit disc. Let B be the unilateral shift. Then we have
by [4; Problem 67]

a(B) D, W(B) D, IIB I[- 1.
Hence B is a spectroid by a theorem of von Neumann. Put T=A(B.
Then by Theorem 4 T is a spectroid with

a(T)=n, W(T)-D, lIT[I=1.
Whereas T is not hyponormal since the reduction of T on the first space

(that is A itseff) is a non-zero quasi-nilpotent and since the reduction
o a hyponormal operator is also hyponormal (there is no non-zero
hyponormal quasi-nilpotent operator [4; Problem 162]).

Corollary 1. There is a numeroid which is not hyponormal.
Corollary 2. There is a spectroid which is not paranormal.
Since the paranormality introduced by Istrescu [6] and named by

Furuta [3] is invariant under the reduction, the same reasoning or
Theorem 5 implies our conclusion.

By a theorem of Luecke [7], there is an operator satisfying the
growth condition (G) which is not a normaloid; hence the condition
(G) can not imply being numeroid, since a numeroid is a normaloid as
pointed bout by Hildebrandt [5]. In the converse direction we shall
show

Theorem 6. There is a numeroid which does not satisfy the
growth condition (G).

Proof. Put

Then we have a(A)={1/2} and IIAII__<I; hence D is a spectral set for
A. Let B be the bilateral shift. Then by [4:; Problem 68] e(B) is the
unit circle 6’ and W(B)=17. Applying Theorem g tor T AB, we can
conclude that T is a numeroid. Clearly, we have (T)--CU{1/.}.
Furthermore, we have

If we put

then we have
[IA-x 1[-- 2/2+ 1/2>2.

If T satisfies the condition (G), then
12 <[IA- 1[_<_ T- [[_<_

dist (0, a(T))
and this contradiction proves the theorem.
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As a consequence of Theorem 6, we can prove the following theorem
which is already established by Schreiber [9] using Toeplitz operators.

Theorem 7 (Schreiber). There is a numeroid which is not a
spectroid.

Proof. By Theorem 6, there is an operator T which is a numeroid
and does not satisfy the condition (G). On the other hand, every
spectroid satisfies the condition (G). Hence T is not a spectroid.

Remark. In the proofs of Theorems 6 and 7, we used the bilateral
shift in a contrast with Theorem 5. However, in a different point of
view, we can give an another simple example" Let

and

B- 2 0
0 3

where the triangle with vertices , and 3 contains the unit disc D.
Since D is a spectral set for A and B is normal withD W(B), T--AB
is a numeroid by Theorem 3 and clearly non-normal. On the other
hand, an operator satisfying the condition (G) is normal in a finite
dimensional space. Hence T can not satisfy the condition (G).

This example shows also that there is a non-normal compact
numeroid.

4. Appendix. Sz.-Nagy and Foia [10] introduced the following
notion (without name)"

Definition C. A point of a compact set S (in the plane) is called
a naked point if there are and r such that

(i) {z;iz-l<r}s,
(ii) converges to as n-*,

and

(iii) I-RI--1 as n--,c,
rn

where S is the complement of S.
Yoshino [11] introduced

Definition D. A point 2 of S is semi-bare if there is a circle
through 2 such that no points of S lie inside the circle.

In [1], the following theorem is proved:
Theorem E (Berberian). If T is an operator satisfying the con-

dition (G1), and if 2 is a semi-bare point of a(T), then
ker (T-A)=ker (T*--2*).

Since a semi-bare point is a naked point, the following theorem is
an extension of Theorem E"
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Theorem 8. If T is an operator satisfying the condition (G), and
if is a naked point of the spectrum a(T), then

ker (T--)=ker (T*--2*).
Proof. Translating if necessary, we can assume 2=0. By the

hypothesis, there are 2 and r such as

{ix [iX--n[rn}a(T), -0, Inl -->1.

We can assume furthermore that r=dist (2n, a(T)). Put

then we have
Sn 0 (n).
rn

Define an-- e argon and
Wn ann(T-- /n) -1.

Since T satisfies the condition (G1), we have

W.ll-lan112nl
lanll2nl/12nl--1.

In the below, we shall show the following three statements by
which Theorem 7 follows"

(1) Wx--->x if and only if W*x-->x,
(2) Tx--O if and only if Wx-->x,

and
(3) T*x--O if and only if W*x-->x.
Suppose that Wnx-->x, then we have

w*x x II- w*x +1 x 2 Re (W*x x)
-_<2[llx II-Re (xl Wnx)]-->O.

The converse implication can be proved similarly. Hence (1) is proved.
Suppose Tx--O. Then we have

IWx-xll<-_llx-W-’xll

nn--n
Sn Ixll-->o.rn

Conversely, suppose that Wxx. Then we have
(T-- anen)X (T-- ,n)(1--

-< (11 T / sup I#n Wnx X

Therefore Tx=lim aenx=O; hence (2) is proved.
Since we can prove (3) similarly, we have proved Theorem 8.
Remark. (1) We wish to point out that there exists a naked

point which is not semi-bare. Let S be the territory being surrounded
by

y--+_l x----l,
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and the envelope of circles

( 1) y2= 1 (t>_l)X-T + (t+l)----The origin is a naked point of S, it is .not semi-bare.
(2) After the preparation of the present note, Mr. Nakamoto

kindly informed us that Theorem 8 is also proved by T. Saito in his
unpublished paper using a lemma of Sz.-Nagy and Foia.
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